1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Comparison of across-frequency integration strategies in a binaural detection model
Rent:
Rent this article for
Access full text Article
/content/asa/journal/jasa/134/5/10.1121/1.4824036
1.
1. H. Fletcher, “ Auditory patterns,” Rev. Mod. Phys. 12, 4765 (1940).
http://dx.doi.org/10.1103/RevModPhys.12.47
2.
2. B. R. Glasberg and B. C. J. Moore, “ Derivation of auditory filter shapes from notched-noise data,” Hear. Res. 47, 103138 (1990).
http://dx.doi.org/10.1016/0378-5955(90)90170-T
3.
3. L. R. Bernstein, S. van de Par, and C. Trahiotis, “ The normalized interaural correlation: Accounting for NoSπ thresholds obtained with Gaussian and ‘low-noise’ masking noise,” J. Acoust. Soc. Am. 106(2), 870876 (1999).
http://dx.doi.org/10.1121/1.428051
4.
4. J. Breebaart, S. van de Par, and A. Kohlrausch, “ Binaural processing model based on contralateral inhibition. I. Model structure,” J. Acoust. Soc. Am. 110(2), 10741088 (2001).
http://dx.doi.org/10.1121/1.1383297
5.
5. T. Dau, D. Püschel, and A. Kohlrausch, “ A quantitative model of the ‘effective’ signal processing in the auditory system. I. Model structure,” J. Acoust. Soc. Am. 99(6), 36153622 (1996).
http://dx.doi.org/10.1121/1.414959
6.
6. B. C. J. Moore, B. R. Glasberg, and T. Baer, “ A model for the prediction of thresholds, loudness, and partial loudness,” J. Audio Eng. Soc. 45(4), 224240 (1997).
7.
7. M. van der Heijden and A. Kohlrausch, “ Using an excitation-pattern model to predict auditory masking,” Hear. Res. 80, 3852 (1994).
http://dx.doi.org/10.1016/0378-5955(94)90007-8
8.
8. N. I. DurlachEqualization and cancellation theory of bianural masking-level differences,” J. Acoust. Soc. Am. 35, 12061218 (1963).
http://dx.doi.org/10.1121/1.1918675
9.
9. H. S. Colburn and N. I. Durlach, “ Models of binaural interaction,” in Handbook of Perception, edited by E. Varterette and M. Friedman (Academic, New York, 1978), Vol. IV, pp. 467518.
10.
10. S. van de Par, A. Kohlrausch, G. Charestan, and R. Heusdens, “ A new psychoacoustical masking model for audio coding applications,” in 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) (2002), Vol. 2, pp. II1805II1808.
11.
11. S. A. Davidson, R. H. Gilkey, H. S. Colburn, and L. H. Carney, “ Binaural detection with narrowband and wideband reproducible noise maskers. III. Monaural and diotic detection and model results,” J. Acoust. Soc. Am. 119(4), 22582275 (2006).
http://dx.doi.org/10.1121/1.2177583
12.
12. M. Florentine and S. Buus, “ An excitation-pattern model for intensity discrimination,” J. Acoust. Soc. Am. 70(6), 16461654 (1981).
http://dx.doi.org/10.1121/1.387219
13.
13. M. J. Goupell, “ The role of envelope statistics in detecting changes in interaural correlation,” J. Acoust. Soc. Am. 132(3), 15611572 (2012).
http://dx.doi.org/10.1121/1.4740498
14.
14. M. Nitschmann and J. L. Verhey, “ Binaural notched-noise masking and auditory fillter shape,” J. Acoust. Soc. Am. 133(4), 22622271 (2013).
http://dx.doi.org/10.1121/1.4792352
15.
15. B. C. J. Moore and B. R. Glasberg, “ Suggested formulae for calculating auditory-filter bandwidths and excitation patterns,” J. Acoust. Soc. Am. 74(3), 750753 (1983).
http://dx.doi.org/10.1121/1.389861
16.
16. S. van de Par and A. Kohlrausch, “ Dependence of binaural masking level differences on center frequency, masker bandwidth, and interaural parameters,” J. Acoust. Soc. Am. 106(4), 19401947 (1999).
http://dx.doi.org/10.1121/1.427942
17.
17. J. W. Hall and A. D. G. Harvey, “ Noso and nosπ thresholds as a function of masker level for narrow-band and wideband masking noise,” J. Acoust. Soc. Am. 76, 1699 (1984).
http://dx.doi.org/10.1121/1.391616
18.
18. J. Breebaart, S. van de Par, and A. Kohlrausch, “ Binaural processing model based on contralateral inhibition. II. Dependence on spectral parameters,” J. Acoust. Soc. Am. 110(2), 10891104 (2001).
http://dx.doi.org/10.1121/1.1383298
http://aip.metastore.ingenta.com/content/asa/journal/jasa/134/5/10.1121/1.4824036
Loading
/content/asa/journal/jasa/134/5/10.1121/1.4824036
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/asa/journal/jasa/134/5/10.1121/1.4824036
2013-10-11
2014-09-17

Abstract

Breebaart [J. Acoust. Soc. Am. 1089–1104 (2001)] reported that the masker bandwidth dependence of detection thresholds for an out-of-phase signal and an in-phase noise masker ( ) can be explained by principles of integration of information across critical bands. In this paper, different methods for such across-frequency integration process are evaluated as a function of the bandwidth and notch width of the masker. The results indicate that an “optimal detector” model assuming independent internal noise in each critical band provides a better fit to experimental data than a best filter or a simple across-frequency integrator model. Furthermore, the exponent used to model peripheral compression influences the accuracy of predictions in notched conditions.

Loading

Full text loading...

/deliver/fulltext/asa/journal/jasa/134/5/1.4824036.html;jsessionid=7k2dcrod696pn.x-aip-live-06?itemId=/content/asa/journal/jasa/134/5/10.1121/1.4824036&mimeType=html&fmt=ahah&containerItemId=content/asa/journal/jasa
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Comparison of across-frequency integration strategies in a binaural detection model
http://aip.metastore.ingenta.com/content/asa/journal/jasa/134/5/10.1121/1.4824036
10.1121/1.4824036
SEARCH_EXPAND_ITEM