1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Automatic assessment of vowel space area
Rent:
Rent this article for
Access full text Article
/content/asa/journal/jasa/134/5/10.1121/1.4826150
1.
1. G. Fant, Speech Sounds and Features (MIT Press, Cambridge, 1973).
2.
2. A. Bladon, “Two-formant models of vowel perception: Shortcomings and enhancement,” Speech Commun. 2(4), 305313 (1983).
http://dx.doi.org/10.1016/0167-6393(83)90047-X
3.
3. R. L. Diehl, B. Lindblom, K. A. Hoemeke, and R. P. Fahey, “On explaining certain male-female differences in the phonetic realization of vowel categories,” J. Phonetics 24(2), 187208 (1996).
http://dx.doi.org/10.1006/jpho.1996.0011
4.
4. R. A. Fox, “Perceptual structure of monophthongs and diphthongs in English,” Lang. Speech 26(1), 2160 (1983).
5.
5. J. Hillenbrand, L. A. Getty, M. J. Clark, and K. Wheeler, “Acoustic characteristics of American English vowels,” J. Acoust. Soc. Am. 97, 30993111 (1995).
http://dx.doi.org/10.1121/1.411872
6.
6. E. Jacewicz and R. A. Fox, “The effects of cross-generational and cross-dialectal variation on vowel identification and classification,” J. Acoust. Soc. Am. 131(2), 14131433 (2012).
http://dx.doi.org/10.1121/1.3676603
7.
7. J. Lam, K. Tjaden, and G. Wilding, “Acoustics of clear speech: Effect of instruction,” J. Speech Lang. Hear. Res. 55(6), 18071821 (2012).
http://dx.doi.org/10.1044/1092-4388(2012/11-0154)
8.
8. G. E. Peterson and H. L. Barney, “Control methods used in a study of the vowels,” J. Acoust. Soc. Am. 24, 175184 (1952).
http://dx.doi.org/10.1121/1.1906875
9.
9. C. G. Clopper, D. B. Pisoni, and K. de Jong, “Acoustic characteristics of the vowel systems of six regional varieties of American English,” J. Acoust. Soc. Am. 118(3) 16611676 (2005).
http://dx.doi.org/10.1121/1.2000774
10.
10. P. Flipsen and S. Lee, “Reference data for the American English acoustic vowel space,” Clin. Linguist. Phonetics 26(11-12), 926933 (2012).
http://dx.doi.org/10.3109/02699206.2012.720634
11.
11. J. Lee and S. Shaiman, “Relationship between articulatory acoustic vowel space and articulatory kinematic vowel space,” J. Acoust. Soc. Am. 132(3), 2003 (2012).
http://dx.doi.org/10.1121/1.4755412
12.
12. A. R. Bradlow and T. Bent, “The clear speech effect for non-native listeners,” J. Acoust. Soc. Am. 112(1), 272284 (2002).
http://dx.doi.org/10.1121/1.1487837
13.
13. H. K. Vorperian and R. D. Kent, “Vowel acoustic space development in children: A synthesis of acoustic and anatomic data,” J. Speech Lang. Hear. Res. 50(6), 15101545 (2007).
http://dx.doi.org/10.1044/1092-4388(2007/104)
14.
14. A. T. Neel, “Vowel space characteristics and vowel identification accuracy,” J. Speech Lang. Hear. Res. 51(3), 574585 (2008).
http://dx.doi.org/10.1044/1092-4388(2008/041)
15.
15. S. Skodda, W. Grönheit, and U. Schlegel, “Impairment of vowel articulation as a possible marker of disease progression in Parkinson's disease,” PloS ONE 7(2), e32132 (2012).
http://dx.doi.org/10.1371/journal.pone.0032132
16.
16. L. B. Leonard, S. E. Weismer, C. A. Miller, D. J. Francis, J. B. Tomblin, and R. V. Kail, “Speed of processing, working memory, and language impairment in children,” J. Speech Lang. Hear. Res. 50(2), 408 (2007).
http://dx.doi.org/10.1044/1092-4388(2007/029)
17.
17. H.-M. Liu, F.-M. Tsao, and P. K. Kuhl, “The effect of reduced vowel working space on speech intelligibility in mandarin-speaking young adults with cerebral palsy,” J. Acoust. Soc. Am. 117, 38793889 (2005).
http://dx.doi.org/10.1121/1.1898623
18.
18. S. Sapir, L. O. Ramig, J. L. Spielman, and C. Fox, “Formant centralization ratio: A proposal for a new acoustic measure of dysarthric speech,” J. Speech Lang. Hear. Res. 53(1), 114 (2010).
http://dx.doi.org/10.1044/1092-4388(2009/08-0184)
19.
19. Y.-I. Bang, K. Min, Y. H. Sohn, and S.-R. Cho, “Acoustic characteristics of vowel sounds in patients with Parkinson disease,” J. Speech, Lang. Hear. Res. 47, 766783 (2013).
20.
20. K. Tjaden and G. E. Wilding, “Rate and loudness manipulations in dysarthria: Acoustic and perceptual findings,” J. Speech Lang. Hear. Res. 47(4), 766783 (2004).
http://dx.doi.org/10.1044/1092-4388(2004/058)
21.
21. P. A. McRae, K. Tjaden, and B. Schoonings, “Acoustic and perceptual consequences of articulatory rate change in Parkinson disease,” J. Speech Lang. Hear. Res. 45(1), 3550 (2002).
http://dx.doi.org/10.1044/1092-4388(2002/003)
22.
22. G. S. Turner, K. Tjaden, and G. Weismer, “The influence of speaking rate on vowel space and speech intelligibility for individuals with amyotrophic lateral sclerosis,” J. Speech Hear. Res. 38(5), 10011013 (1995).
23.
23. G. Weismer, J.-Y. Jeng, J. Laures, R. D. Kent, and J. F. Kent, “Acoustic and intelligibility characteristics of sentence production in neurogenic speech disorders,” Folia Phoniatr. Logop. 53, 118 (2001).
http://dx.doi.org/10.1159/000052649
24.
24. C. M. Higgins and M. M. Hodge, “Vowel area and intelligibility in children with and without dysarthria,” J. Med. Speech Lang. Pathol. 10(4), 271278 (2002).
25.
25. S. Sapir, J. L. Spielman, L. O. Ramig, B. H. Story, and C. Fox, “Effects of intensive voice treatment (the Lee Silverman voice treatment [LSVT]) on vowel articulation in dysarthric individuals with idiopathic Parkinson disease: Acoustic and perceptual findings,” J. Speech Lang. Hear. Res. 50(4), 899912 (2007).
http://dx.doi.org/10.1044/1092-4388(2007/064)
26.
26. K. L. Lansford and J. M. Liss, “Vowel acoustics in dysarthria: Speech disorder diagnosis and classification,” J. Speech Lang. Hear. Sci., in press.
27.
27. K. L. Lansford and J. M. Liss, “Vowel acoustics in dysarthria: Mapping to perception,” J. Speech Lang. Hear. Sci., in press.
28.
28. J. Rusz, R. Cmejla, T. Tykalova, H. Ruzickova, J. Klempir, V. Majerova, J. Picmausova, J. Roth, and E. Ruzicka, “Imprecise vowel articulation as a potential early marker of Parkinson's disease: Effect of speaking task,” J. Acoust. Soc. Am. 134, 21712181 (2013).
http://dx.doi.org/10.1121/1.4816541
29.
29. W. M. Fisher, G. R. Doddington, and K. M. Goudie-Marshall, “The DARPA speech recognition research database: Specifications and status,” in Proceedings of DARPA Workshop on Speech Recognition (1986), pp. 9399.
30.
30. P. Boersma, “praat, a system for doing phonetics by computer,” Glot Int. 5(9/10), 341345 (2001).
31.
31. D. G. Childers, Modern Spectrum Analysis, IEEE Press Selected Reprint Series (IEEE, New York, 1978).
32.
32. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in c, The Art of Scientific Computing, 2nd ed. (Cambridge University Press, New York, 1992).
33.
33. D. A. Reynolds and R. C. Rose, “Robust text-independent speaker identification using Gaussian mixture speaker models,” IEEE Trans. Speech Audio Process. 3(1), 7283 (1995).
http://dx.doi.org/10.1109/89.365379
34.
34. J. B. MacQueen, “Some methods for classification and analysis of multivariate observations,” in Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, edited by L. M. Le Cam and J. Neyman (University of California Press, Berkley, 1967), Vol. 1, pp. 281297.
35.
35. F. P. Preparata and M. I. Shamos, “Introduction,” in Computational Geometry, Texts and Monographs in Computer Science (Springer, New York, 1985), pp. 135.
36.
36. matlab, version 8.0.0.783 (R2012b), The MathWorks Inc., Natick, Massachusetts, 2012.
37.
37. Language Files, edited by C. J. Colby, R. Wallace, and C. Jolly (Ohio State University Press, Columbus, 1982).
38.
38. K. Bunton and G. Weismer, “The relationship between perception and acoustics for a high-low vowel contrast produced by speakers with dysarthria,” J. Speech Lang. Hear. Res. 44(6), 12151228 (2001).
http://dx.doi.org/10.1044/1092-4388(2001/095)
http://aip.metastore.ingenta.com/content/asa/journal/jasa/134/5/10.1121/1.4826150
Loading
/content/asa/journal/jasa/134/5/10.1121/1.4826150
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/asa/journal/jasa/134/5/10.1121/1.4826150
2013-10-21
2014-08-27

Abstract

Vowel space area (VSA) is an attractive metric for the study of speech production deficits and reductions in intelligibility, in addition to the traditional study of vowel distinctiveness. Traditional VSA estimates are not currently sufficiently sensitive to map to production deficits. The present report describes an automated algorithm using healthy, connected speech rather than single syllables and estimates the entire vowel working space rather than corner vowels. Analyses reveal a strong correlation between the traditional VSA and automated estimates. When the two methods diverge, the automated method seems to provide a more accurate area since it accounts for all vowels.

Loading

Full text loading...

/deliver/fulltext/asa/journal/jasa/134/5/1.4826150.html;jsessionid=22ai4eucc714d.x-aip-live-02?itemId=/content/asa/journal/jasa/134/5/10.1121/1.4826150&mimeType=html&fmt=ahah&containerItemId=content/asa/journal/jasa
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Automatic assessment of vowel space area
http://aip.metastore.ingenta.com/content/asa/journal/jasa/134/5/10.1121/1.4826150
10.1121/1.4826150
SEARCH_EXPAND_ITEM