1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Immersive experimentation in a wave propagation laboratory
Rent:
Rent this article for
Access full text Article
/content/asa/journal/jasa/134/6/10.1121/1.4826912
1.
1. Aki, K. , and Richards, P. G. (2002). Quantitative Seismology, 2nd ed. (University Science Books, Sausalito, CA).
2.
2. Amundsen, L. (2001). “ Elimination of free-surface related multiples without need of the source wavelet,” Geophysics 66, 327341.
http://dx.doi.org/10.1190/1.1444912
3.
3. Berkhout, A. J. , de Vries, D. , and Vogel, P. (1993). “ Acoustic control by wave field synthesis,” J. Acoust. Soc. Am. 93, 27642778.
http://dx.doi.org/10.1121/1.405852
4.
4. Blum, T. E. , van Wijk, K. , Snieder, R. , and Willis, M. E. (2011). “ Laser excitation of a fracture source for elastic waves,” Phys. Rev. Lett. 107, 275501.
http://dx.doi.org/10.1103/PhysRevLett.107.275501
5.
5. Capdeville, Y. , Guillot, L. , and Marigo, J.-J. (2010). “ 2-D non-periodic homogenization to upscale elastic media for P–SV waves,” Geophys. J. Int. 182, 903922.
http://dx.doi.org/10.1111/j.1365-246X.2010.04636.x
6.
6. Fokkema, J. T. , and van den Berg, P. M. (1993). Seismic Applications of Acoustic Reciprocity (Elsevier, Amsterdam).
7.
7. Grote, M. J. , and Kirsch, C. (2007). “ Nonreflecting boundary condition for time-dependent multiple scattering,” J. Comput. Phys. 221, 4162.
http://dx.doi.org/10.1016/j.jcp.2006.06.007
8.
8. Grote, M. J. , and Sim, I. (2011). “ Local nonreflecting boundary condition for time-dependent multiple scattering,” J. Comput. Phys. 230, 31353154.
http://dx.doi.org/10.1016/j.jcp.2011.01.017
9.
9. Hadziioannou, C. , Larose, E. , Coutant, O. , Roux, P. , and Campillo, M. (2009). “ Stability of monitoring weak changes in multiply scattering media with ambient noise correlation: Laboratory experiments,” J. Acoust. Soc. Am. 125, 36883695.
http://dx.doi.org/10.1121/1.3125345
10.
10. Larose, E. , Planes, T. , Rossetto, V. , and Margerin, L. (2010). “ Locating a small change in a multiple scattering environment,” Appl. Phys. Lett. 96, 204101.
http://dx.doi.org/10.1063/1.3431269
11.
11. McDonald, J. A. , Gardner, G. H. F. , and Hilterman, F. J. (1983). Seismic Studies in Physical Modeling (IHRDC Press, Boston).
12.
12. Mikesell, T. D. , van Wijk, K. , Blum, T. E. , Snieder, R. , and Sato, H. (2012). “ Analyzing the coda from correlating scattered surface waves,” J. Acoust. Soc. Am. 131, EL275EL281.
13.
13. Robertsson, J. O. A. , Blanch, J. , and Symes, W. W. (1994). “ Viscoelastic finite-difference modeling,” Geophysics 59, 14441456.
http://dx.doi.org/10.1190/1.1443701
14.
14. Thomson, C. J. (2012). “ Research note: Internal/external seismic source wavefield separation and cancellation,” Geophys. Prospect. 60, 581587.
http://dx.doi.org/10.1111/j.1365-2478.2011.01043.x
15.
15. van Manen, D.-J. , Robertsson, J. O. A. , and Curtis, A. (2005). “ Modeling of wave propagation in inhomogeneous media,” Phys. Rev. Lett. 94, 1643011.
16.
16. van Manen, D.-J. , Robertsson, J. O. A. , and Curtis, A. (2007). “ Exact wave field simulation for finite-volume scattering problems,” J. Acoust. Soc. Am. 122, EL115EL121.
http://aip.metastore.ingenta.com/content/asa/journal/jasa/134/6/10.1121/1.4826912
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Cartoon of physical laboratory and numerical simulation domains. The source distribution on cancels physical boundary reflections for outgoing waves (1) , and introduces ingoing waves from interactions with the numerical model (2) . In the overlapping region the medium of the physical model must be equal to that of the numerical model.

Image of FIG. 2.

Click to view

FIG. 2.

Velocity and model for numerical example. Wave propagation in a homogeneous medium with velocity 2000 m/s is modeled, with the physical laboratory containing a strongly attenuating anomaly ( 20). The emitting surface is a rigid boundary, and the numerical domain is bounded by free surfaces.

Image of FIG. 3.

Click to view

FIG. 3.

Snapshots of modeled pressure on a reference (complete) model (left), in the simulated proposed physical laboratory (middle), and in a physical laboratory without active boundary sources (right). The corresponding velocity and model are displayed in Fig. 2 . Top: snapshots at  = 1 ms. Bottom: snapshots at  = 2 ms.

Tables

Generic image for table

Click to view

TABLE I.

Description of the states employed for the derivation of the source distribution on .

Loading

Article metrics loading...

/content/asa/journal/jasa/134/6/10.1121/1.4826912
2013-11-05
2014-04-16

Abstract

A wave propagation laboratory is proposed which enables the study of the interaction of broadband signals with complex materials. A physical experiment is dynamically linked to a numerical simulation in real time through transmitting and recording transducer surfaces surrounding the target. The numerical simulation represents an arbitrarily larger domain, allowing experiments to be performed in a total environment much greater than the laboratory experiment itself. Specific applications include the study of non-linear effects or wave propagation in media where the physics of wave propagation is not well understood such as the effect of fine scale heterogeneity on broadband propagating waves.

Loading

Full text loading...

/deliver/fulltext/asa/journal/jasa/134/6/1.4826912.html;jsessionid=3q1s3n856m97o.x-aip-live-01?itemId=/content/asa/journal/jasa/134/6/10.1121/1.4826912&mimeType=html&fmt=ahah&containerItemId=content/asa/journal/jasa
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Immersive experimentation in a wave propagation laboratory
http://aip.metastore.ingenta.com/content/asa/journal/jasa/134/6/10.1121/1.4826912
10.1121/1.4826912
SEARCH_EXPAND_ITEM