Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. M. Fink, “ Time reversed acoustics,” Phys. Today 50, 3440 (1997).
2. B. E. Anderson, M. Griffa, C. Larmat, T. J. Ulrich, and P. A. Johnson, “ Time reversal,” Acoust. Today 4(1), 516 (2008).
3. T. J. Ulrich, A. M. Sutin, T. Claytor, P. Papin, P.-Y. Le Bas, and J. A. TenCate, “ The time reversed elastic nonlinearity diagnostic applied to evaluation of diffusion bonds,” Appl. Phys. Lett. 93, 151914 (2008).
4. B. E. Anderson, M. Griffa, P.-Y. Le Bas, T. J. Ulrich, and P. A. Johnson, “ Experimental implementation of reverse time migration for nondestructive evaluation applications,” J. Acoust. Soc. Am. 129(1), EL8EL14 (2011).
5. S. Dos Santos and Z. Prevorovsky, “ Imaging of human tooth using ultrasound based chirp-coded nonlinear time reversal acoustics,” Ultrasonics 51(6), 667674 (2011).
6. P.-Y. Le Bas, T. J. Ulrich, B. E. Anderson, R. A. Guyer, and P. A. Johnson, “ Probing the interior of a solid volume with time reversal and nonlinear elastic wave spectroscopy,” J. Acoust. Soc. Am. 130(4), EL258EL263 (2011).
7. L. Quan, X. Liu, and X. Gong, “ Nonlinear nonclassical acoustic method for detecting the location of cracks,” J. Appl. Phys. 112(5), 054906 (2012).
8. A. S. Gliozzi, M. Scalerandi, and P. Antonaci, “ One-channel time reversal acoustics in highly attenuating media,” J. Phys. D: Appl. Phys. 46(13), 135502 (2013).
9. J. Brum, S. Catheline, N. Benech, and C. Negreira, “ Shear elasticity estimation from surface wave: The time reversal approach,” J. Acoust. Soc. 124(6), 33773380 (2008).
10. M. R. Bai and Y. K. Tsai, “ Impact localization combined with haptic feedback for touch panel applications based on the time-reversal approach,” J. Acoust. Soc. Am. 129(3), 12971305 (2001).
11. B. Van Damme, K. Van Den Abeele, Y. Li, and O. Bou Matar, “ Time reversed acoustics techniques for elastic imaging in reverberant and nonreverberant media: An experimental study of the chaotic cavity transducer concept,” J. Appl. Phys. 109(10), 104910 (2011).
12. T. Gallot, S. Catheline, P. Roux, and M. Campillo, “ A passive inverse filter for Green's function retrieval,” J. Acoust. Soc. Am. 131(1), EL21EL27 (2012).
13. T. J. Ulrich, M. Griffa, and B. E. Anderson, “ Symmetry-based imaging condition in time reversed acoustics,” J. Appl. Phys. 104(6), 064912 (2008).
14. B. E. Anderson, T. J. Ulrich, M. Griffa, P.-Y. Le Bas, M. Scalerandi, A. S. Gliozzi, and P. A. Johnson, “ Experimentally identifying masked sources applying time reversal with the selective source reduction method,” J. Appl. Phys. 105(8), 083506 (2009).
15. M. Tanter, J. F. Aubry, J. Gerber, J. L. Thomas, and M. Fink, “ Optimal focusing by spatiotemporal inverse filter. I. Basic principles,” J. Acoust. Soc. Am. 110(1), 3747 (2001).
16. T. J. Ulrich, B. E. Anderson, P.-Y. Le Bas, C. Payan, J. Douma, and R. Snieder, “ Improving time reversal focusing through deconvolution: 20 questions,” Proc. Meet. Acoust. 16, 045015 (2012).
17. B. E. Anderson, R. A. Guyer, T. J. Ulrich, P.-Y. Le Bas, C. Larmat, M. Griffa, and P. A. Johnson, “ Energy current imaging method for time reversal in elastic media,” Appl. Phys. Lett. 95(2), 021907 (2009).

Data & Media loading...


Article metrics loading...



This Letter presents a series of time reversal experiments conducted on the surface of a fused silica glass block. Four different time reversal techniques are compared using three different imaging conditions. The techniques include two classical time reversal experiments: one with a pulse waveform source and one with an impulse response generated from a chirp signal. The other two techniques utilize the deconvolution, or inverse filter, signal processing methods for obtaining the signals to back propagate using a pulse waveform and an impulse response from a chirp. The max-in-time, symmetry, and energy current imaging conditions are compared.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd