1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Clutter depth discrimination using the wavenumber spectrum
Rent:
Rent this article for
Access full text Article
/content/asa/journal/jasa/135/1/10.1121/1.4828979
1.
1. Baggeroer, A. B. , Kuperman, W. A. , and Schmidt, H. (1988). “ Matched field processing: Source localization in correlated noise as an optimum parameter estimation problem,” J. Acoust. Soc. Am. 83(2), 571587.
http://dx.doi.org/10.1121/1.396151
2.
2. Becker, K. M. , and Ballard, M. S. (2010). “ Accounting for water-column variability in shallow-water waveguide characterizations based on modal eigenvalues,” in Shallow-Water Acoustics, Second International Shallow-Water Acoustics Conference, edited by J. Simmen, E. S. Livingston, J. X. Zhou, and F. H. Li (AIP, Melville, NY), pp. 4652.
3.
3. Brekhovskikh, L. M. , and Lysanov, Y. P. (1991). Fundamentals of Ocean Acoustics, 2nd ed. (Springer, New York), pp. 140145.
4.
4. Bucker, H. P. (1976). “ Use of calculated sound fields and matched field detection to locate sound sources in shallow water,” J. Acoust. Soc. Am. 59(5), 368373.
http://dx.doi.org/10.1121/1.380872
5.
5. Chuprov, S. D. (1982). “ Interference structure of a sound field in a layered ocean,” in Ocean Acoustics, Current Status, edited by L. M. Brekhovskikh and I. B. Andreyeva (Nauka, Moscow), pp. 7191.
6.
6. Cockrell, K. L. , and Schmidt, H. (2011). “ A modal Wentzel-Kramers-Brillouin approach to calculating the waveguide invariant for non-ideal waveguides,” J. Acoust. Soc. Am. 130, 7283.
http://dx.doi.org/10.1121/1.3592236
7.
7. D’Spain, G. L. , and Kuperman, W. A. (1999). “ Application of waveguide invariants to analysis of spectrograms from shallow water environments that vary in range and azimuth,” J. Acoust. Soc. Am. 106, 24542468.
http://dx.doi.org/10.1121/1.428124
8.
8. Fawcett, J. A. , Yeremy, M. L. , and Chapman, N. R. (1996). “ Matched-field source localization in a range-dependent environment,” J. Acoust. Soc. Am. 99(1), 272282.
http://dx.doi.org/10.1121/1.414538
9.
9. Frisk, G. V. (1994). Ocean and Seabed Acoustics: A Theory of Wave Propagation (PTR Prentice-Hall, Englewood Cliffs, NJ), Chap. 6.
10.
10. Frisk, G. V. , and Lynch, J. F. (1984). “ Shallow water waveguide characterization using the Hankel transform,” J. Acoust. Soc. Am. 76(1), 205216.
http://dx.doi.org/10.1121/1.391098
11.
11. Gerstoft, P. , D’Spain, G. L. , Kuperman, W. A. , and Hodgkiss, W. S. (2001). “ Calculating the waveguide invariant (beta) by ray-theoretic approaches,” MPL Technical Memo No. TM-468, Marine Physical Laboratory, University of California, San Diego.
12.
12. Glattetre, J. , Knudsen, T. , and Sostrand, K. (1989). “ Mode interference and mode filtering in shallow water: A comparison of acoustic measurements and modeling,” J. Acoust. Soc. Am. 86(2), 680690.
http://dx.doi.org/10.1121/1.398246
13.
13. Harrison, C. H. (2011). “ The relation between the waveguide invariant, multipath impulse response, and ray cycles,” J. Acoust. Soc. Am. 129(5), 28632877.
http://dx.doi.org/10.1121/1.3569701
14.
14. Jensen, F. B. , Kuperman, W. A. , Porter, M. B. , and Schmidt, H. (2000). Computational Ocean Acoustics (Springer, New York), Chaps. 2, 3, and 5.
15.
15. Lauer, R. B. (1980). “ Wavenumber acoustics: Passive localization and multipath decomposition,” Acoustics, Speech and Signal Processing, IEEE International Conference on ICASSP’80, Vol. 5, pp. 10261029.
16.
16. Nicolas, B. , Mars, J. I. , and Lacoume, J.-L. (2006). “ Source depth estimation using a horizontal array by matched-mode processing in the frequency-wavenumber domainEURASIP J. Appl. Signal Process. 1, 116.
http://dx.doi.org/10.1155/ASP/2006/65901
17.
17. Porter, M. B. (2012). “The Scooter FFP model,” http://oalib.hlsresearch.com/Modes/AcousticsToolbox/manual_html/node63.html (Last viewed November 9, 2013).
18.
18. Shang, E. C. (1985). “ Source depth estimation in waveguides,” J. Acoust. Soc. Am. 77(4), 14131418.
http://dx.doi.org/10.1121/1.392034
19.
19. Turgut, A. , and Orr, M. (2010). “ Broadband source localization using horizontal-beam acoustic intensity striations,” J. Acoust. Soc. Am. 127(1), 7383.
http://dx.doi.org/10.1121/1.3257211
20.
20. Yang, T. C. (1987). “ A method of range and depth estimation my modal decomposition,” J. Acoust. Soc. Am. 82, 17361745.
http://dx.doi.org/10.1121/1.395825
http://aip.metastore.ingenta.com/content/asa/journal/jasa/135/1/10.1121/1.4828979
Loading
/content/asa/journal/jasa/135/1/10.1121/1.4828979
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/asa/journal/jasa/135/1/10.1121/1.4828979
2013-12-10
2014-12-27

Abstract

Clutter depth is a key parameter in mid-frequency active sonar systems to discriminate between sources of clutter and targets of interest. A method is needed to remotely discriminate clutter depth by information contained in the backscattered signal—without knowledge of that depth. Presented here is an efficient approach for clutter depth estimation using the structure in the wavenumber spectrum. Based on numerical simulations for a simple test case in a shallow water waveguide, this technique demonstrates the potential capability to discriminate between a clutter source in the water column vs one on the seabed.

Loading

Full text loading...

/deliver/fulltext/asa/journal/jasa/135/1/1.4828979.html;jsessionid=b6lfe1d13s397.x-aip-live-06?itemId=/content/asa/journal/jasa/135/1/10.1121/1.4828979&mimeType=html&fmt=ahah&containerItemId=content/asa/journal/jasa
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Clutter depth discrimination using the wavenumber spectrum
http://aip.metastore.ingenta.com/content/asa/journal/jasa/135/1/10.1121/1.4828979
10.1121/1.4828979
SEARCH_EXPAND_ITEM