Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/asa/journal/jasa/135/2/10.1121/1.4861241
1.
1. M. A. Breazeale and D. O. Thompson, “ Finite-amplitude ultrasonic waves in aluminum,” Appl. Phys. Lett. 3, 7778 (1963).
http://dx.doi.org/10.1063/1.1753876
2.
2. P. H. Carr, “ Harmonic generation of microwave phonons in quartz,” Phys. Rev. Lett. 13, 332335 (1964).
http://dx.doi.org/10.1103/PhysRevLett.13.332
3.
3. P. H. Carr, “ Harmonic generation of microwave phonons by radiation pressure and by the phonon-phonon interaction,” IEEE T. Son. Ultrason. 13, 103108 (1966).
http://dx.doi.org/10.1109/T-SU.1966.29390
4.
4. K. K. Ermilin, L. K. Zarembo, and V. A. Krasil'nikov, “ Generation of superhigh frequency acoustic harmonics in a lithium niobate crystals,” Sov. Phys. Solid State 12, 10451052 (1970).
5.
5. A. A. Gedroits and V. A. Krasil'nikov, “ Finite-amplitude elastic waves amplitude in solids and deviations from the Hooke's law,” JETP Lett. 16, 1122 (1963).
6.
6. N. S. Shiren, “ Nonlinear acoustic interaction in MgO at 9 Gc/sec,” Phys. Rev. Lett. 11, 36 (1963).
http://dx.doi.org/10.1103/PhysRevLett.11.3
7.
7. A. Hikata, B. B. Chick, and C. Elbaum, “ Dislocation contribution to the second harmonic generation of ultrasonic waves,” J. Appl. Phys. 36, 229236 (1965).
http://dx.doi.org/10.1063/1.1713881
8.
8. P. A. Johnson and K. R. McCall, “ Observation and implications of nonlinear elastic wave response in rock,” Geophys. Res. Lett. 21, 165168, doi:10.1029/93GL03162 (1994).
http://dx.doi.org/10.1029/93GL03162
9.
9. Y. Hiki and K. Mukai, “ Ultrasonic three-phonon process in copper crystal,” J. Phys. Soc. Jpn. 34, 454461 (1973).
http://dx.doi.org/10.1143/JPSJ.34.454
10.
10. F. R. Rollins, L. H. Taylor, and P. H. Todd, “ Ultrasonic study of three-phonon interactions. II. Experimental results,” Phys. Rev. 136, A597A601 (1964).
http://dx.doi.org/10.1103/PhysRev.136.A597
11.
11. L. K. Zarembo and V. A. Krasil'nikov, “ Nonlinear phenomena in the propagation of elastic waves in solids,” Sov. Phys. Usp. 13, 778797 (1971).
http://dx.doi.org/10.1070/PU1971v013n06ABEH004281
12.
12. P. A. Johnson, T. J. Shankland, R. J. O'Connell, and J. N. Albright, “ Nonlinear generation of elastic waves in crystalline rock,” J. Geophys. Res. 92, 35973602, doi:10.1029/JB092iB05p03597 (1987).
http://dx.doi.org/10.1029/JB092iB05p03597
13.
13. P. A. Johnson and T. J. Shankland, “ Nonlinear generation of elastic waves in granite and sandstone: Continuous wave and travel time observations,” J. Geophys. Res. 94, 1772917733, doi:10.1029/JB094iB12p17729 (1989).
http://dx.doi.org/10.1029/JB094iB12p17729
14.
14. H. H. Barrett and J. H. Matsinger, “ Interaction of almost-collinear longitudinal phonons,” Phys. Rev. 154, 877886 (1967).
http://dx.doi.org/10.1103/PhysRev.154.877
15.
15. R. W. Dunham and H. B. Huntington, “ Ultrasonic beam mixing as a measure of the nonlinear parameters of fused silica and single-crystal NaCl,” Phys. Rev. B 2, 10981107 (1970).
http://dx.doi.org/10.1103/PhysRevB.2.1098
16.
16. A. J. Croxford, P. D. Wilcox, B. W. Drinkwater, and P. B. Nagy, “ The use of non-collinear mixing for nonlinear ultrasonic detection of plasticity and fatigue,” J. Acoust. Soc. Am. 126, EL117EL122 (2009).
http://dx.doi.org/10.1121/1.3231451
17.
17. A. Demčenko, R. Akkerman, P. B. Nagy, and R. Loendersloot, “ Non-collinear wave mixing for non-linear ultrasonic detection of physical ageing in PVC,” NDT & E Int. 49, 3439 (2012).
http://dx.doi.org/10.1016/j.ndteint.2012.03.005
18.
18. F. D. Murnaghan, Finite Deformation of an Elastic Solid (John Wiley & Sons, New York, 1951), 140 pp.
19.
19. L. K. Zarembo and V. A. Krasil'nikov, Introduction in Nonlinear Acoustics (Science, Moscow, 1966), Chap. 8 (in Russian).
20.
20. V. A. Korneev, K. T. Nihei, and L. R. Myer, “ Nonlinear interaction of plane elastic waves,” Tech. Rep. LBNL-41914 (Lawrence Berkeley National Laboratory, Berkeley, CA, 1998).
21.
21. L. D. Landau and E. M. Lifshitz, Theory of Elasticity (Pergamon Press, New York, 1959), 134 pp.
22.
22. G. L. Jones and D. R. Kobett, “ Interaction of elastic waves in an isotropic solid,” J. Acoust. Soc. Am. 35, 510 (1963).
http://dx.doi.org/10.1121/1.1918405
23.
23. L. H. Taylor and F. R. Rollins, “ Ultrasonic study of three-phonon interactions. I. Theory,” Phys. Rev. 136, A591A596 (1964).
http://dx.doi.org/10.1103/PhysRev.136.A591
24.
24. J. D. Childress and C. G. Hambrick, “ Interactions between elastic waves in an isotropic solid,” Phys. Rev. 136, A411A418 (1964).
http://dx.doi.org/10.1103/PhysRev.136.A411
25.
25. A. C. Holt and J. Ford, “ Theory of ultrasonic three-phonon interactions in single-crystal solids,” J. Appl. Phys. 40, 142148 (1969).
http://dx.doi.org/10.1063/1.1657019
26.
26. P. A. Johnson and P. N. J. Rasolofosaon, “ Nonlinear elasticity and stress-induced anisotropy in rock,” J. Geophys. Res. 101, 31133124, doi:10.1029/95JB02880 (1996).
http://dx.doi.org/10.1029/95JB02880
27.
27. V. E. Nazarov, L. A. Ostrovsky, I. A. Soustova, and A. M. Sutin, “ Nonlinear acoustics of micro-inhomogeneous media,” Phys. Earth Planet. Inter. 50, 6573 (1988).
http://dx.doi.org/10.1016/0031-9201(88)90094-5
28.
28. R. Prioul, A. Bakulin, and V. Bakulin, “ Nonlinear rock physics model for estimation of 3D subsurface stress in anisotropic formations: Theory and laboratory verification,” Geophysics 69, 415425 (2004).
http://dx.doi.org/10.1190/1.1707061
29.
29. D. Sarkar, A. Bakulin, and R. L. Kranz, “ Anisotropic inversion of seismic data for stressed media: Theory and a physical modeling study on Berea sandstone,” Geophysics 68, 690704 (2003).
http://dx.doi.org/10.1190/1.1567240
30.
30. V. Korneev and S. Glubokovskikh, “ Seismic velocity changes caused by an overburden stress,” Geophysics 78, WC25WC31 (2013).
http://dx.doi.org/10.1190/geo2012-0380.1
31.
31. V. A. Korneev and L. R. Johnson, “ Scattering of P and S waves by spherically symmetric inclusion,” Pure Appl. Geophys. 147, 675718 (1996).
http://dx.doi.org/10.1007/BF01089697
32.
32. A. Demčenko, V. Koissin, and V. A. Korneev, “ Noncollinear wave mixing for measurement of dynamic processes in polymers: Physical ageing in thermoplastics and epoxy cure,” Ultrasonics 54, 684693 (2014).
http://dx.doi.org/10.1016/j.ultras.2013.09.011
http://aip.metastore.ingenta.com/content/asa/journal/jasa/135/2/10.1121/1.4861241
Loading
/content/asa/journal/jasa/135/2/10.1121/1.4861241
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/asa/journal/jasa/135/2/10.1121/1.4861241
2014-02-01
2016-12-04

Abstract

There exist ten possible nonlinear elastic wave interactions for an isotropic solid described by three constants of the third order. All other possible interactions out of 54 combinations (triplets) of interacting and resulting waves are prohibited, because of restrictions of various kinds. The considered waves include longitudinal and two shear waves polarized in the interacting plane and orthogonal to it. The amplitudes of scattered waves have simple analytical forms, which can be used for experimental setup and design. The analytic results are verified by comparison with numerical solutions of initial equations. Amplitude coefficients for all ten interactions are computed as functions of frequency for polyvinyl chloride, together with interaction and scattering angles. The nonlinear equation of motion is put into a general vector form and can be used for any coordinate system.

Loading

Full text loading...

/deliver/fulltext/asa/journal/jasa/135/2/1.4861241.html;jsessionid=sG2Y59TIdspwcY__ulAwcXhL.x-aip-live-06?itemId=/content/asa/journal/jasa/135/2/10.1121/1.4861241&mimeType=html&fmt=ahah&containerItemId=content/asa/journal/jasa
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=asadl.org/jasa/135/2/10.1121/1.4861241&pageURL=http://scitation.aip.org/content/asa/journal/jasa/135/2/10.1121/1.4861241'
Right1,Right2,Right3,