1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Perceptual changes in place of stimulation with long cochlear implant electrode arrays
Rent:
Rent this article for
Access full text Article
/content/asa/journal/jasa/135/2/10.1121/1.4862875
1.
1. Arnoldner, C. , Riss, D. , Baumgartner, W. D. , Kaider, A. , and Hamzavi, J. S. (2007). “Cochlear implant channel separation and its influence on speech perception–implications for a new electrode design,” Audiol. Neuro-Otol. 12, 313324.
http://dx.doi.org/10.1159/000103212
2.
2. Baumann, U. , and Nobbe, A. (2004). “Pitch ranking with deeply inserted electrode arrays,” Ear Hear. 25, 275283.
http://dx.doi.org/10.1097/00003446-200406000-00008
3.
3. Baumann, U. , and Nobbe, A. (2006). “The cochlear implant electrode-pitch function,” Hear. Res. 213, 3442.
http://dx.doi.org/10.1016/j.heares.2005.12.010
4.
4. Boyd, P. J. (2011). “Potential benefits from deeply inserted cochlear implant electrodes,” Ear Hear. 32, 411427.
http://dx.doi.org/10.1097/AUD.0b013e3182064bda
5.
5. Dorman, M. F. , Spahr, T. , Gifford, R. , Loiselle, L. , McKarns, S. , Holden, T. , Skinner, M. , and Finley, C. (2007). “An electric frequency-to-place map for a cochlear implant patient with hearing in the nonimplanted ear,” J. Assoc. Res. Otolaryngol. 8, 234240.
http://dx.doi.org/10.1007/s10162-007-0071-1
6.
6. Gani, M. , Valentini, G. , Sigrist, A. , Kos, M. I. , and Boex, C. (2007). “Implications of deep electrode insertion on cochlear implant fitting,” J. Assoc. Res. Otolaryngol. 8, 6983.
http://dx.doi.org/10.1007/s10162-006-0065-4
7.
7. Greenwood, D. D. (1990). “A cochlear frequency-position function for several species—29 years later,” J. Acoust. Soc. Am. 87, 25922605.
http://dx.doi.org/10.1121/1.399052
8.
8. Hamzavi, J. , and Arnoldner, C. (2006). “Effect of deep insertion of the cochlear implant electrode array on pitch estimation and speech perception,” Acta Oto-Laryngol. 126, 11821187.
http://dx.doi.org/10.1080/00016480600672683
9.
9. Kawano, A. , Seldon, H. L. , and Clark, G. M. (1996). “Computer-aided three-dimensional reconstruction in human cochlear maps: Measurement of the lengths of organ of Corti, outer wall, inner wall, and Rosenthal's canal,” Ann. Otol., Rhinol., Laryngol. 105, 701709.
10.
10. Kendall, D. (1971). “Seriation from abundance matrices,” in Mathematics in the Archaeological and Historical Sciences, edited by F. Hodson, D. Kendall, and P. Tautu (Edinburgh University Press, Edinburgh), pp. 215252.
11.
11. Lawless, H. T. (1986). “Multidimensional scaling,” in Clinical Measurement of Taste and Smell, edited by H. L. Meiselman and R. S. Rivlin (MacMillan Publishing Company, New York), pp. 87103.
12.
12. Luo, X. , Padilla, M. , and Landsberger, D. M. (2012). “Pitch contour identification with combined place and temporal cues using cochlear implants,” J. Acoust. Soc. Am. 131, 13251336.
http://dx.doi.org/10.1121/1.3672708
13.
13. Nadol, J. B. , Jr. (1997). “Patterns of neural degeneration in the human cochlea and auditory nerve: Implications for cochlear implantation,” Otolaryngol.—Head Neck Surg. 117, 220228.
http://dx.doi.org/10.1016/S0194-5998(97)70178-5
14.
14. Otte, J. , Schunknecht, H. F. , and Kerr, A. G. (1978). “Ganglion cell populations in normal and pathological human cochleae. Implications for cochlear implantation,” Laryngoscope 88, 12311246.
15.
15. Rom, D. M. (1990). “A sequentially rejective test procedure based on a modified Bonferroni inequality,” Biometrika 77, 663665.
http://dx.doi.org/10.1093/biomet/77.3.663
16.
16. Spoendlin, H. , and Schrott, A. (1988). “The spiral ganglion and the innervation of the human organ of Corti,” Acta Oto-Laryngol. 105, 403410.
http://dx.doi.org/10.3109/00016488809119493
17.
17. Tong, Y. C. , Blamey, P. J. , Dowell, R. C. , and Clark, G. M. (1983). “Psychophysical studies evaluating the feasibility of a speech processing strategy for a multiple-channel cochlear implant,” J. Acoust. Soc. Am. 74, 7380.
http://dx.doi.org/10.1121/1.389620
18.
18. Young, F. , and Lewyckyj, R. (1979). ALSCAL-4 User's Guide, University of North Carolina, Chapel Hill, NC.
http://aip.metastore.ingenta.com/content/asa/journal/jasa/135/2/10.1121/1.4862875
Loading
/content/asa/journal/jasa/135/2/10.1121/1.4862875
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/asa/journal/jasa/135/2/10.1121/1.4862875
2014-01-24
2014-09-23

Abstract

Long (31.5 mm) electrode arrays are inserted deeper into the cochlea than the typical 1.25 turn insertion. With these electrode arrays, the apical electrodes are closer to (and possibly extend past) the end of the spiral ganglion. Using multi-dimensional scaling with patients implanted with a 31.5 mm electrode array, the perceptual space between electrodes was measured. The results suggest that deeper insertion increases the range of place pitches, but the perceptual differences between adjacent electrodes become smaller in the apex.

Loading

Full text loading...

/deliver/fulltext/asa/journal/jasa/135/2/1.4862875.html;jsessionid=2r4ptqo80c9mu.x-aip-live-06?itemId=/content/asa/journal/jasa/135/2/10.1121/1.4862875&mimeType=html&fmt=ahah&containerItemId=content/asa/journal/jasa

Most read this month

Article
content/asa/journal/jasa
Journal
5
3
Loading

Most cited this month

true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Perceptual changes in place of stimulation with long cochlear implant electrode arrays
http://aip.metastore.ingenta.com/content/asa/journal/jasa/135/2/10.1121/1.4862875
10.1121/1.4862875
SEARCH_EXPAND_ITEM