1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Dependences of quantitative ultrasound parameters on frequency and porosity in water-saturated nickel foams
Rent:
Rent this article for
Access full text Article
/content/asa/journal/jasa/135/2/10.1121/1.4862878
1.
1. D. Hans and M. A. Krieg, “The clinical use of quantitative ultrasound (QUS) in the detection and management of osteoporosis,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55, 15291538 (2008).
http://dx.doi.org/10.1109/TUFFC.2008.829
2.
2. P. Laugier, “Instrumentation for in vivo ultrasonic characterization of bone strength,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55, 11791196 (2008).
http://dx.doi.org/10.1109/TUFFC.2008.782
3.
3. R. Strelitzki, J. A. Evans, and A. J. Clarke, “The influence of porosity and pore size on the ultrasonic properties of bone investigated using a phantom material,” Osteoporosis Int. 7, 370375 (1997).
http://dx.doi.org/10.1007/BF01623780
4.
4. K. A. Wear, “The dependencies of phase velocity and dispersion on trabecular thickness and spacing in trabecular bone-mimicking phantoms,” J. Acoust. Soc. Am. 118, 11861192 (2005).
http://dx.doi.org/10.1121/1.1940448
5.
5. K. I. Lee and M. J. Choi, “Phase velocity and normalized broadband ultrasonic attenuation in Polyacetal cuboid bone-mimicking phantoms,” J. Acoust. Soc. Am. 121, EL263EL269 (2007).
http://dx.doi.org/10.1121/1.2719046
6.
6. K. A. Wear, “Mechanisms for attenuation in cancellous-bone-mimicking phantoms,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55, 24182425 (2008).
http://dx.doi.org/10.1109/TUFFC.949
7.
7. K. A. Wear, “The dependencies of phase velocity and dispersion on volume fraction in cancellous-bone-mimicking phantoms,” J. Acoust. Soc. Am. 125, 11971201 (2009).
http://dx.doi.org/10.1121/1.3050310
8.
8. C. Zhang, L. H. Le, R. Zheng, D. Ta, and E. Lou, “Measurements of ultrasonic phase velocities and attenuation of slow waves in cellular aluminum foams as cancellous bone-mimicking phantoms,” J. Acoust. Soc. Am. 129, 33173326 (2011).
http://dx.doi.org/10.1121/1.3562560
9.
9. K. Attenborough, H.-C. Shin, Q. Qin, M. J. Fagan, and C. M. Langton, “Measurements of tortuosity in stereolithographical bone replicas using audiofrequency pulses (L),” J. Acoust. Soc. Am. 118, 27792782 (2005).
http://dx.doi.org/10.1121/1.2062688
10.
10. K. I. Lee and M. J. Choi, “Frequency-dependent attenuation and backscatter coefficients in bovine trabecular bone from 0.2 to 1.2 MHz,” J. Acoust. Soc. Am. 131, EL67EL73 (2012).
http://dx.doi.org/10.1121/1.3671064
11.
11. M. A. Biot, “Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low frequency range,” J. Acoust. Soc. Am. 28, 168178 (1956).
http://dx.doi.org/10.1121/1.1908239
12.
12. M. A. Biot, “Theory of propagation of elastic waves in a fluid-saturated porous solid. II. High frequency range,” J. Acoust. Soc. Am. 28, 179191 (1956).
http://dx.doi.org/10.1121/1.1908241
13.
13. P. H. F. Nicholson, G. Lowet, C. M. Langton, J. Dequeker, and G. Van Der Perre, “Comparison of time-domain and frequency-domain approaches to ultrasonic velocity measurements in trabecular bone,” Phys. Med. Biol. 41, 24212435 (1996).
http://dx.doi.org/10.1088/0031-9155/41/11/013
14.
14. R. Strelitzki and J. A. Evans, “On the measurement of the velocity of ultrasound in the os calcis using short pulses,” Eur. J. Ultrasound 4, 205213 (1996).
http://dx.doi.org/10.1016/S0929-8266(96)00193-0
15.
15. P. Droin, G. Berger, and P. Laugier, “Velocity dispersion of acoustic waves in cancellous bone,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 581592 (1998).
http://dx.doi.org/10.1109/58.677603
16.
16. K. A. Wear, “Measurements of phase velocity and group velocity in human calcaneus,” Ultrasound Med. Biol. 26, 641646 (2000).
http://dx.doi.org/10.1016/S0301-5629(99)00172-6
17.
17. K. A. Wear, “Group velocity, phase velocity, and dispersion in human calcaneus in vivo,” J. Acoust. Soc. Am. 121, 24312437 (2007).
http://dx.doi.org/10.1121/1.2697436
18.
18. S. Chaffai, F. Padilla, G. Berger, and P. Laugier, “In vitro measurement of the frequency-dependent attenuation in cancellous bone between 0.2 and 2 MHz,” J. Acoust. Soc. Am. 108, 12811289 (2000).
http://dx.doi.org/10.1121/1.1288934
19.
19. K. A. Wear, “Ultrasonic attenuation in human calcaneus from 0.2 to 1.7 MHz,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48, 602608 (2001).
http://dx.doi.org/10.1109/58.911743
20.
20. C. M. Langton and C. F. Njeh, “The measurement of broadband ultrasonic attenuation in cancellous bone—A review of the science and technology,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55, 15461554 (2008).
http://dx.doi.org/10.1109/TUFFC.2008.831
21.
21. K. A. Wear, “Frequency dependence of ultrasonic backscatter from human trabecular bone: Theory and experiment,” J. Acoust. Soc. Am. 106, 36593664 (1999).
http://dx.doi.org/10.1121/1.428218
22.
22. S. Chaffai, V. Roberjot, F. Peyrin, G. Berger, and P. Laugier, “Frequency dependence of ultrasonic backscattering in cancellous bone: Autocorrelation model and experimental results,” J. Acoust. Soc. Am. 108, 24032411 (2000).
http://dx.doi.org/10.1121/1.1316094
23.
23. F. Padilla, F. Jenson, and P. Laugier, “Estimation of trabecular thickness using ultrasonic backscatter,” Ultrason. Imag. 28, 322 (2006).
http://dx.doi.org/10.1177/016173460602800102
24.
24. K. A. Wear, “Ultrasonic scattering from cancellous bone: A review,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55, 14321441 (2008).
http://dx.doi.org/10.1109/TUFFC.2008.818
25.
25. D. Ta, W. Wang, K. Huang, Y. Wang, and L. H. Le, “Analysis of frequency dependence of ultrasonic backscatter coefficient in cancellous bone,” J. Acoust. Soc. Am. 124, 40834090 (2008).
http://dx.doi.org/10.1121/1.3001705
26.
26. P. H. F. Nicholson, R. Muller, X. G. Cheng, P. Ruegsegger, G. Van Der Perre, J. Dequeker, and S. Boonen, “Quantitative ultrasound and trabecular architecture in the human calcaneus,” J. Bone Miner. Res. 16, 18861892 (2001).
http://dx.doi.org/10.1359/jbmr.2001.16.10.1886
27.
27. S. Han, J. Rho, J. Medige, and I. Ziv, “Ultrasonic velocity and broadband attenuation over a wide range of bone mineral density,” Osteoporosis Int. 6, 291296 (1996).
http://dx.doi.org/10.1007/BF01623387
28.
28. L. Serpe and J. Y. Rho, “The nonlinear transition period of broadband ultrasound attenuation as bone density varies,” J. Biomech. 29, 963966 (1996).
http://dx.doi.org/10.1016/0021-9290(95)00146-8
29.
29. F. Jenson, F. Padilla, V. Bousson, C. Bergot, J.-D. Laredo, and P. Laugier, “In vitro ultrasonic characterization of human cancellous femoral bone using transmission and backscatter measurements: Relationships to bone mineral density,” J. Acoust. Soc. Am. 119, 654663 (2006).
http://dx.doi.org/10.1121/1.2126936
30.
30. K. N. Apostolopoulos and D. D. Deligianni, “Influence of microarchitecture alterations on ultrasonic backscattering in an experimental simulation of bovine cancellous bone aging,” J. Acoust. Soc. Am. 123, 11791187 (2008).
http://dx.doi.org/10.1121/1.2822291
http://aip.metastore.ingenta.com/content/asa/journal/jasa/135/2/10.1121/1.4862878
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Micrograph of a nickel foam with a porosity of 97.5% obtained by using a scanning electron microscope (SEM) (left) and time-domain signals transmitted with and without a nickel foam with a porosity of 97.5% in the acoustic path (right).

Image of FIG. 2.

Click to view

FIG. 2.

Phase velocity as a function of the frequency for a nickel foam with a porosity of 97.5% (left) and phase velocity at 1.0 MHz as a function of the porosity for the 24 nickel foams (right).

Image of FIG. 3.

Click to view

FIG. 3.

Attenuation coefficient as a function of the frequency for a nickel foam with a porosity of 97.5% (left) and nBUA as a function of the porosity for the 24 nickel foams (right).

Image of FIG. 4.

Click to view

FIG. 4.

Backscatter coefficient as a function of the frequency for a nickel foam with a porosity of 97.5% (left) and backscatter coefficient at 1.0 MHz as a function of the porosity for the 24 nickel foams (right).

Loading

Article metrics loading...

/content/asa/journal/jasa/135/2/10.1121/1.4862878
2014-01-24
2014-04-16

Abstract

The frequency-dependent phase velocity, attenuation coefficient, and backscatter coefficient were measured from 0.8 to 1.2 MHz in 24 water-saturated nickel foams as trabecular-bone-mimicking phantoms. The power law fits to the measurements showed that the phase velocity, the attenuation coefficient, and the backscatter coefficient were proportional to the frequency with exponents of 0.95, 1.29, and 3.18, respectively. A significant linear correlation was found between the phase velocity at 1.0 MHz and the porosity. In contrast, the best regressions for the normalized broadband ultrasound attenuation and the backscatter coefficient at 1.0 MHz were obtained with the polynomial fits of second order.

Loading

Full text loading...

/deliver/fulltext/asa/journal/jasa/135/2/1.4862878.html;jsessionid=7e2opu0374dnk.x-aip-live-02?itemId=/content/asa/journal/jasa/135/2/10.1121/1.4862878&mimeType=html&fmt=ahah&containerItemId=content/asa/journal/jasa
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Dependences of quantitative ultrasound parameters on frequency and porosity in water-saturated nickel foams
http://aip.metastore.ingenta.com/content/asa/journal/jasa/135/2/10.1121/1.4862878
10.1121/1.4862878
SEARCH_EXPAND_ITEM