Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy, “Osteoporosis prevention, diagnosis and therapy,” J. Am. Med. Assoc. 285, 785795 (2001).
2. E. Lucchinetti, D. Thomann, and G. Danuser, “Micromechanical testing of bone trabeculae—potentials and limitations,” J. Mater. Sci. 35, 60576064 (2000).
3. B. L. Riggs and L. J. Melton, in Osteoporosis, Etiology, Diagnosis, and Management (Raven, New York, 1988) through Ultrasonics 30, 389–395 (1992).
4. W. J. Landis, M. J. Song, A. Leith, L. McEwen, and B. F. McEwen, “Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by high-voltage electron microscopic tomography and graphic image reconstruction,” J. Struct. Biol. 110, 3954 (1993).
5. P. Laugier and G. Haiat, Bone Quantative Ultrasound, 1st ed. (Springer, New York, 2011).
6. K. Mizuno, M. Matsukawa, T. Otani, P. Laugier, and F. Padilla, “Propagation of two longitudinal waves in human cancellous bone: An in vitro study,” J. Acoust. Soc. Am. 125, 34603466 (2009).
7. Y. Yamato, M. Matsukawa, T. Otani, K. Yamazaki, and A. Nagano, “Distribution of longitudinal wave properties in bovine cortical bone in vitro,” Ultrasonics (Suppl.) 44, e233e237 (2006).
8. P. K. Zysset, X. E. Guo, C. E. Hoffler, K. E. Moore, and S. A. Goldstein, “Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur,” J. Biomech. 32, 10051012 (1999).
9. A. G. Reisinger, D. H. Pahr, and P. K. Zysset, “Principal stiffness orientation and degree of anisotropy of human osteons based on nanoindentation in three distinct planes,” J. Mech. Behav. Biomed. Mater. 4, 21132127 (2011).
10. F. Rupin, A. Saïed, D. Dalmas, F. Peyrin, S. Haupert, K. Raum, E. Barthel, G. Boivin, and P. Laugier, “Assessment of microelastic properties of bone using scanning acoustic microscopy; a 15 face-to-face comparison with nanoindentation,” Jpn. J. Appl. Phys. 48, 07GK01 (2009).
11. D. Rohrbach, S. Lakshmanan, F. Peyrin, M. Langer, A. Gerisch, Q. Grimal, P. Laugier, and K. Raum, “Spatial distribution of tissue level properties in a human femoral cortical bone,” J. Biomech. 45, 22642270 (2012).
12. K. Raum, J. Reibhauer, and J. Brandt, “Frequency and resolution dependence of the anisotropic impedance estimation in cortical bone using time-resolved scanning acoustic microscopy,” J. Biomed. Mater. Res. A 71A, 430438 (2004).
13. A. Saïed, K. Raum, I. Leguerney, and P. Laugier, “Spatial distribution of anisotropic acoustic impedance assessed by time-resolved 50-MHz scanning acoustic microscopy and its relation to porosity in human cortical bone,” Bone 43(1), 187194 (2008).
14. M. Sakamoto, M. Kawabe, M. Matsukawa, N. Koizumi, and N. Ohtori, “Measurement of wave velocity in bovine bone tissue by micro Brillouin scattering,” Jpn. J. Appl. Phys. 47, 42054208 (2008).
15. M. Kawabe, K. Fukui, M. Matsukawa, M. Granke, A. Saied, Q. Grimal, and P. laugier, “Comparative experimental investigation of local elastic properties in a trabecular of bovine femur using micro-Brillouin scattering and scanning acoustic microscopy,” J. Acoust. Soc. Am. 132(1), EL54EL60 (2012).
16. V. Mathieu, K. Fukui, R. Vayron, E. Soffer, G. Haiat, F. Anagnostou, M. Matsukawa, and M. Kawabe, “Micro-Brillouin scatteing measurements in mature and newly formed bone tissue surrounding an implant,” J. Biomech. Eng. 133, 021006 (2011).
17. J. R. Sandercock, Light Scattering in Solids (Springer, Berlin, 1982), Chap. 6, p. 173.
18. M. Matsukawa, K. Shintani, S. Tomohiro, and N. Ohtori, “Application of Brillouin scattering to the local anisotropy and birefringence measurements of thin layers,” Ultrasonics (Suppl.) 44, e1555e1559 (2006).
19. J. K. Krüger, J. Embs, J. Brierley, and R. Jiménez, “A new Brillouin scattering techniques for the investigation of acoustic and opto-acoustic properties: Application to polymers,” J. Phys. D 31, 19131917 (1998).
20. K. Mizuno, M. Matsukawa, T. Otani, M. Takada, I. Mano, and T. Tsujimoto, “Effects of structural anisotropy of cancellous bone on speed of ultrasonic fast waves in the bovine femur,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55(7), 14801487 (2008).
21. M. Kawabe, M. Matsukawa, and N. Ohtori, “Measurement of wave velocity distribution in a trabecula by micro-Brillouin scattering,” Jpn. J. Appl. Phys. 49, 07HB05 (2010).

Data & Media loading...


Article metrics loading...



Ultrasonic wave velocities in trabeculae of distal end of bovine femurs were measured using micro-Brillouin scattering (-BR). -BR allows the measurement of wave velocities in a small area (diameter, 10 m). Trabecular structure and alignment were evaluated with x-ray micro-computed tomography techniques before -BR measurements. Wave velocities in rod-type trabeculae [4.90 × 103 m/s with standard deviation (SD) of 0.05 × 103 m/s] were higher than those in plate-type trabeculae (4.79 × 103 m/s with SD of 0.05 × 103 m/s). The elastic properties of trabeculae appeared to change with trabecular type and direction of trabecular alignment.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd