1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Local ultrasonic wave velocities in trabeculae measured by micro-Brillouin scattering
Rent:
Rent this article for
Access full text Article
/content/asa/journal/jasa/135/2/10.1121/1.4862883
1.
1. NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy, “Osteoporosis prevention, diagnosis and therapy,” J. Am. Med. Assoc. 285, 785795 (2001).
http://dx.doi.org/10.1001/jama.285.6.785
2.
2. E. Lucchinetti, D. Thomann, and G. Danuser, “Micromechanical testing of bone trabeculae—potentials and limitations,” J. Mater. Sci. 35, 60576064 (2000).
http://dx.doi.org/10.1023/A:1026748913553
3.
3. B. L. Riggs and L. J. Melton, in Osteoporosis, Etiology, Diagnosis, and Management (Raven, New York, 1988) through Ultrasonics 30, 389–395 (1992).
4.
4. W. J. Landis, M. J. Song, A. Leith, L. McEwen, and B. F. McEwen, “Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by high-voltage electron microscopic tomography and graphic image reconstruction,” J. Struct. Biol. 110, 3954 (1993).
http://dx.doi.org/10.1006/jsbi.1993.1003
5.
5. P. Laugier and G. Haiat, Bone Quantative Ultrasound, 1st ed. (Springer, New York, 2011).
6.
6. K. Mizuno, M. Matsukawa, T. Otani, P. Laugier, and F. Padilla, “Propagation of two longitudinal waves in human cancellous bone: An in vitro study,” J. Acoust. Soc. Am. 125, 34603466 (2009).
http://dx.doi.org/10.1121/1.3111107
7.
7. Y. Yamato, M. Matsukawa, T. Otani, K. Yamazaki, and A. Nagano, “Distribution of longitudinal wave properties in bovine cortical bone in vitro,” Ultrasonics (Suppl.) 44, e233e237 (2006).
http://dx.doi.org/10.1016%2Fj.ultras.2006.06.055
8.
8. P. K. Zysset, X. E. Guo, C. E. Hoffler, K. E. Moore, and S. A. Goldstein, “Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur,” J. Biomech. 32, 10051012 (1999).
http://dx.doi.org/10.1016/S0021-9290(99)00111-6
9.
9. A. G. Reisinger, D. H. Pahr, and P. K. Zysset, “Principal stiffness orientation and degree of anisotropy of human osteons based on nanoindentation in three distinct planes,” J. Mech. Behav. Biomed. Mater. 4, 21132127 (2011).
http://dx.doi.org/10.1016/j.jmbbm.2011.07.010
10.
10. F. Rupin, A. Saïed, D. Dalmas, F. Peyrin, S. Haupert, K. Raum, E. Barthel, G. Boivin, and P. Laugier, “Assessment of microelastic properties of bone using scanning acoustic microscopy; a 15 face-to-face comparison with nanoindentation,” Jpn. J. Appl. Phys. 48, 07GK01 (2009).
http://dx.doi.org/10.1143/JJAP.48.07GK01
11.
11. D. Rohrbach, S. Lakshmanan, F. Peyrin, M. Langer, A. Gerisch, Q. Grimal, P. Laugier, and K. Raum, “Spatial distribution of tissue level properties in a human femoral cortical bone,” J. Biomech. 45, 22642270 (2012).
http://dx.doi.org/10.1016/j.jbiomech.2012.06.003
12.
12. K. Raum, J. Reibhauer, and J. Brandt, “Frequency and resolution dependence of the anisotropic impedance estimation in cortical bone using time-resolved scanning acoustic microscopy,” J. Biomed. Mater. Res. A 71A, 430438 (2004).
http://dx.doi.org/10.1002/jbm.a.30156
13.
13. A. Saïed, K. Raum, I. Leguerney, and P. Laugier, “Spatial distribution of anisotropic acoustic impedance assessed by time-resolved 50-MHz scanning acoustic microscopy and its relation to porosity in human cortical bone,” Bone 43(1), 187194 (2008).
http://dx.doi.org/10.1016/j.bone.2008.02.015
14.
14. M. Sakamoto, M. Kawabe, M. Matsukawa, N. Koizumi, and N. Ohtori, “Measurement of wave velocity in bovine bone tissue by micro Brillouin scattering,” Jpn. J. Appl. Phys. 47, 42054208 (2008).
http://dx.doi.org/10.1143/JJAP.47.4205
15.
15. M. Kawabe, K. Fukui, M. Matsukawa, M. Granke, A. Saied, Q. Grimal, and P. laugier, “Comparative experimental investigation of local elastic properties in a trabecular of bovine femur using micro-Brillouin scattering and scanning acoustic microscopy,” J. Acoust. Soc. Am. 132(1), EL54EL60 (2012).
http://dx.doi.org/10.1121%2F1.4730329
16.
16. V. Mathieu, K. Fukui, R. Vayron, E. Soffer, G. Haiat, F. Anagnostou, M. Matsukawa, and M. Kawabe, “Micro-Brillouin scatteing measurements in mature and newly formed bone tissue surrounding an implant,” J. Biomech. Eng. 133, 021006 (2011).
http://dx.doi.org/10.1115/1.4003131
17.
17. J. R. Sandercock, Light Scattering in Solids (Springer, Berlin, 1982), Chap. 6, p. 173.
18.
18. M. Matsukawa, K. Shintani, S. Tomohiro, and N. Ohtori, “Application of Brillouin scattering to the local anisotropy and birefringence measurements of thin layers,” Ultrasonics (Suppl.) 44, e1555e1559 (2006).
http://dx.doi.org/10.1016%2Fj.ultras.2006.05.162
19.
19. J. K. Krüger, J. Embs, J. Brierley, and R. Jiménez, “A new Brillouin scattering techniques for the investigation of acoustic and opto-acoustic properties: Application to polymers,” J. Phys. D 31, 19131917 (1998).
http://dx.doi.org/10.1088%2F0022-3727%2F31%2F15%2F021
20.
20. K. Mizuno, M. Matsukawa, T. Otani, M. Takada, I. Mano, and T. Tsujimoto, “Effects of structural anisotropy of cancellous bone on speed of ultrasonic fast waves in the bovine femur,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55(7), 14801487 (2008).
http://dx.doi.org/10.1109/TUFFC.2008.823
21.
21. M. Kawabe, M. Matsukawa, and N. Ohtori, “Measurement of wave velocity distribution in a trabecula by micro-Brillouin scattering,” Jpn. J. Appl. Phys. 49, 07HB05 (2010).
http://dx.doi.org/10.1143/JJAP.49.07HB05
http://aip.metastore.ingenta.com/content/asa/journal/jasa/135/2/10.1121/1.4862883
Loading
/content/asa/journal/jasa/135/2/10.1121/1.4862883
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/asa/journal/jasa/135/2/10.1121/1.4862883
2014-01-27
2014-08-20

Abstract

Ultrasonic wave velocities in trabeculae of distal end of bovine femurs were measured using micro-Brillouin scattering (-BR). -BR allows the measurement of wave velocities in a small area (diameter, 10 m). Trabecular structure and alignment were evaluated with x-ray micro-computed tomography techniques before -BR measurements. Wave velocities in rod-type trabeculae [4.90 × 103 m/s with standard deviation (SD) of 0.05 × 103 m/s] were higher than those in plate-type trabeculae (4.79 × 103 m/s with SD of 0.05 × 103 m/s). The elastic properties of trabeculae appeared to change with trabecular type and direction of trabecular alignment.

Loading

Full text loading...

/deliver/fulltext/asa/journal/jasa/135/2/1.4862883.html;jsessionid=6oi8710ih05hu.x-aip-live-06?itemId=/content/asa/journal/jasa/135/2/10.1121/1.4862883&mimeType=html&fmt=ahah&containerItemId=content/asa/journal/jasa
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Local ultrasonic wave velocities in trabeculae measured by micro-Brillouin scattering
http://aip.metastore.ingenta.com/content/asa/journal/jasa/135/2/10.1121/1.4862883
10.1121/1.4862883
SEARCH_EXPAND_ITEM