Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. H. E. Bass, R. Raspet, and J. O. Messer, “Experimental determination of wind speed and direction using a three microphone array,” J. Acoust. Soc. Am. 97, 695696 (1995).
2. L. G. Evers and P. Siegmund, “Infrasonic signature of the 2009 major sudden stratospheric warming,” Geophys. Res. Lett. 36, L23808, doi:10.1029/2009GL041323 (2009).
3. M. M. Haney, “Infrasonic ambient noise interferometry from correlations of microbaroms,” Geophys. Res. Lett. 36, L19808, doi:10.1029/2009GL040179 (2009).
4. O. A. Godin, “Recovering the acoustic Green's function from ambient noise cross-correlation in an inhomogeneous moving medium,” Phys. Rev. Lett. 97, 054301 (2006).
5. O. A. Godin, “Emergence of the acoustic Green's function from thermal noise,” J. Acoust. Soc. Am. 121, EL96EL102 (2007).
6. O. A. Godin, “Cross-correlation function of acoustic fields generated by random high-frequency sources,” J. Acoust. Soc. Am. 128, 600610 (2010).
7. W. Munk, P. Worcester, and C. Wunsch, Ocean Acoustic Tomography (Cambridge University Press, Cambridge, UK, 1995), Chap. 3.
8. K. Wapenaar, “Nonreciprocal Green's function retrieval by cross correlation,” J. Acoust. Soc. Am. 120, EL7EL13 (2006).
9. J. T. Fricke, N. El Allouche, D. G. Simons, E. N. Ruigrok, K. Wapenaar, and L. G. Evers, “Infrasonic interferometry of stratospherically refracted microbaroms—A numerical study,” J. Acoust. Soc. Am. 134, 26602668 (2013).
10. L. Stehly, M. Campillo, B. Froment, and R. L. Weaver, “Reconstructing Green's function by correlation of the coda of the correlation (C3) of ambient seismic noise,” J. Geophys. Res. 113, B11306, doi:10.1029/2008JB005693 (2008).
11. O. A. Godin, D. Yu. Mikhin, and S. Ya. Molchanov, “On effective sound speed approximation in acoustics of moving media,” Izv. Akad. Nauk. Fiz. Atmos. Okeana 29, 194201 (1993).
12. O. A. Godin, “A 2-D description of sound propagation in a horizontally-inhomogeneous ocean,” J. Comput. Acoust. 10, 123151 (2002).
13. L. M. Brekhovskikh and O. A. Godin, Acoustics of Layered Media 2: Point Sources and Bounded Beams, 2nd ed. (Springer, Berlin, 1999), Chap. 4.
14. G. S. K. Wong and T. F. W. Embleton, “Variation of the speed of sound in air with humidity and temperature,” J. Acoust. Soc. Am. 77, 17101712 (1985).
15. O. A. Godin, N. A. Zabotin, and V. V. Goncharov, “Ocean tomography with acoustic daylight,” Geophys. Res. Lett. 37, L13605, doi:10.1029/2010GL043623 (2010).
16. F.-C. Lin, V. C. Tsai, B. Schmandt, Z. Duputel, and Z. Zhan, “Extracting seismic core phases with array interferometry,” Geophys. Res. Lett. 40, 10491053, doi:10.1002/grl.50237 (2013).

Data & Media loading...


Article metrics loading...



Random acoustic fields generated by uncorrelated sources in moving media contain information about the propagation environment, including sound speed and flow velocity. This information can be recovered by noise interferometry. Here interferometric techniques are applied to road traffic noise. Acoustic travel times and their nonreciprocity are retrieved from two-point cross-correlation functions of noise. The feasibility of passive acoustic measurements of wind velocity using diffuse noise is experimentally demonstrated for the first time. The accuracy of the interferometric measurements of sound speed and wind velocity is confirmed by comparison with measurements of wind, air temperature, and humidity.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd