Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/asa/journal/jasa/135/4/10.1121/1.4868392
1.
1. ANSI (1997). ANSI S3.5-1997. Methods for the Calculation of the Speech Intelligibility Index (American National Standards Institute, New York).
2.
2. Bacon, S. P. , and Grantham, D. W. (1989). “Modulation masking: Effects of modulation frequency, depth, and phase,” J. Acoust. Soc. Am. 85, 25752580.
http://dx.doi.org/10.1121/1.397751
3.
55. Bernstein, J. G. , and Brungart, D. S. (2011). “Effects of spectral smearing and temporal fine-structure distortion on the fluctuating-masker benefit for speech at a fixed signal-to-noise ratio,” J. Acoust. Soc. Am. 130, 473488.
http://dx.doi.org/10.1121/1.3589440
4.
3. Bernstein, J. G. W. , and Grant, K. W. (2009). “Auditory and auditory-visual intelligibility of speech in fluctuating maskers for normal-hearing and hearing-impaired listeners,” J. Acoust. Soc. Am. 125, 33583372.
http://dx.doi.org/10.1121/1.3110132
5.
4. Brungart, D. S. , Simpson, B. D. , Ericson, M. A. , and Scott, K. R. (2001). “Informational and energetic masking effects in the perception of multiple simultaneous talkers,” J. Acoust. Soc. Am. 110, 25272538.
http://dx.doi.org/10.1121/1.1408946
6.
5. Carhart, R. , Tillman, T. , and Johnson, K. (1966). “Binaural masking of speech by periodically modulated noise,” J. Acoust. Soc. Am. 39, 10371050.
http://dx.doi.org/10.1121/1.1909990
7.
6. Chi, T. , Gao, Y. , Guyton, M. C. , Ru, P. , and Shamma, S. (1999). “Spectro-temporal modulation transfer functions and speech intelligibility,” J. Acoust. Soc. Am. 106, 27192731.
http://dx.doi.org/10.1121/1.428100
8.
7. Christiansen, C. , and Dau, T. (2012). “Relationship between masking release in fluctuating maskers and speech reception thresholds in stationary noise,” J. Acoust. Soc. Am. 132, 16551666.
http://dx.doi.org/10.1121/1.4742732
9.
8. de Cheveigné, A. (1997). “Concurrent vowel identification. III. A neural model of harmonic interference cancellation,” J. Acoust. Soc. Am. 101, 28572865.
http://dx.doi.org/10.1121/1.419480
10.
9. de Cheveigné, A. , McAdams, S. , and Marin, C. M. H. (1997). “Concurrent vowel identification. II. Effects of phase, harmonicity, and task,” J. Acoust. Soc. Am. 101, 28482856.
http://dx.doi.org/10.1121/1.419476
11.
10. Drullman, R. , Festen, J. M. , and Plomp, R. (1994a). “Effect of reducing slow temporal modulations on speech reception,” J. Acoust. Soc. Am. 95, 26702680.
http://dx.doi.org/10.1121/1.409836
12.
11. Drullman, R. , Festen, J. M. , and Plomp, R. (1994b). “Effect of temporal envelope smearing on speech reception,” J. Acoust. Soc. Am. 95, 10531064.
http://dx.doi.org/10.1121/1.408467
13.
12. Dubbelboer, F. , and Houtgast, T. (2008). “The concept of signal-to-noise ratio in the modulation domain and speech intelligibility,” J. Acoust. Soc. Am. 124, 39373946.
http://dx.doi.org/10.1121/1.3001713
14.
13. Duquesnoy, A. J. (1983). “Effect of a single interfering noise or speech source on the binaural sentence intelligibility of aged persons,” J. Acoust. Soc. Am. 74, 739743.
http://dx.doi.org/10.1121/1.389859
15.
14. Durlach, N. I. , Mason, C. R. , Kidd, G. , Jr., Arbogast, T. L. , Colburn, H. S. , and Shinn-Cunningham, B. G. (2003). “Note on informational masking,” J. Acoust. Soc. Am. 113, 29842987.
http://dx.doi.org/10.1121/1.1570435
16.
15. Ewert, S. D. , and Dau, T. (2000). “Characterizing frequency selectivity for envelope fluctuations,” J. Acoust. Soc. Am. 108, 11811196.
http://dx.doi.org/10.1121/1.1288665
17.
16. Festen, J. M. , and Plomp, R. (1990). “Effects of fluctuating noise and interfering speech on the speech-reception threshold for impaired and normal hearing,” J. Acoust. Soc. Am. 88, 17251736.
http://dx.doi.org/10.1121/1.400247
18.
17. Finney, D. J. (1971). Probit Analysis (Cambridge University Press, Cambridge), pp. 1333.
19.
18. Fletcher, H. (1953). Speech and Hearing in Communication (Van Nostrand, New York), pp. 1461.
20.
19. Freyman, R. L. , Griffin, A. M. , and Oxenham, A. J. (2012). “Intelligibility of whispered speech in stationary and modulated noise maskers,” J. Acoust. Soc. Am. 132, 25142523.
http://dx.doi.org/10.1121/1.4747614
21.
20. Füllgrabe, C. , Berthommier, F. , and Lorenzi, C. (2006). “Masking release for consonant features in temporally fluctuating background noise,” Hear. Res. 211, 7484.
http://dx.doi.org/10.1016/j.heares.2005.09.001
22.
21. George, E. L. , Festen, J. M. , and Houtgast, T. (2006). “Factors affecting masking release for speech in modulated noise for normal-hearing and hearing-impaired listeners,” J. Acoust. Soc. Am. 120, 22952311.
http://dx.doi.org/10.1121/1.2266530
23.
22. Glasberg, B. R. , and Moore, B. C. J. (1990). “Derivation of auditory filter shapes from notched-noise data,” Hear. Res. 47, 103138.
http://dx.doi.org/10.1016/0378-5955(90)90170-T
24.
23. Gregan, M. J. , Nelson, P. B. , and Oxenham, A. J. (2013). “Behavioral measures of cochlear compression and temporal resolution as predictors of speech masking release in hearing-impaired listeners,” J. Acoust. Soc. Am. 134, 28952912.
http://dx.doi.org/10.1121/1.4818773
25.
24. Healy, E. W. , and Steinbach, H. M. (2007). “The effect of smoothing filter slope and spectral frequency on temporal speech information,” J. Acoust. Soc. Am. 121, 11771181.
http://dx.doi.org/10.1121/1.2354019
26.
25. Houtgast, T. (1989). “Frequency selectivity in amplitude-modulation detection,” J. Acoust. Soc. Am. 85, 16761680.
http://dx.doi.org/10.1121/1.397956
27.
26. Howard-Jones, P. A. , and Rosen, S. (1993). “Uncomodulated glimpsing in ‘checkerboard’ noise,” J. Acoust. Soc. Am. 93, 29152922.
http://dx.doi.org/10.1121/1.405811
28.
27. Jørgensen, S. , and Dau, T. (2011). “Predicting speech intelligibility based on the signal-to-noise envelope power ratio after modulation-frequency selective processing,” J. Acoust. Soc. Am. 130, 14751487.
http://dx.doi.org/10.1121/1.3621502
29.
28. Jürgens, T. , and Brand, T. (2009). “Microscopic prediction of speech recognition for listeners with normal hearing in noise using an auditory model,” J. Acoust. Soc. Am. 126, 26352648.
http://dx.doi.org/10.1121/1.3224721
30.
29. Kohlrausch, A. , Fassel, R. , and Dau, T. (2000). “The influence of carrier level and frequency on modulation and beat-detection thresholds for sinusoidal carriers,” J. Acoust. Soc. Am. 108, 723734.
http://dx.doi.org/10.1121/1.429605
31.
30. Léger, A. , Moore, B. C. J. , and Lorenzi, C. (2012a). “A review of speech masking release for hearing-impaired listeners with near-normal perception of speech in unmodulated noise maskers,” in Speech Perception and Auditory Disorders: 3rd International Symposium on Auditory and Audiological Research (ISAAR 2011), edited by T. Dau, M. L. Jepsen, T. Poulsen, and J. C. Dalsgaard (The Danavox Jubilee Foundation, Ballerup, Denmark), pp. 159166.
32.
31. Léger, A. , Moore, B. C. J. , and Lorenzi, C. (2012b). “Temporal and spectral masking release in the low- and mid-frequency regions for normal-hearing and hearing-impaired listeners,” J. Acoust. Soc. Am. 131, 15021514.
http://dx.doi.org/10.1121/1.3665993
33.
32. Miller, G. A. , and Licklider, J. C. R. (1950). “The intelligibility of interrupted speech,” J. Acoust. Soc. Am. 22, 167173.
http://dx.doi.org/10.1121/1.1906584
34.
33. Moore, B. C. J. (2012). An Introduction to the Psychology of Hearing, 6th ed. (Brill, Leiden, The Netherlands), pp. 1441.
35.
34. Nelson, P. B. , Jin, S. H. , Carney, A. E. , and Nelson, D. A. (2003). “Understanding speech in modulated interference: cochlear implant users and normal-hearing listeners,” J. Acoust. Soc. Am. 113, 961968.
http://dx.doi.org/10.1121/1.1531983
36.
35. Oxenham, A. J. , and Simonson, A. M. (2009). “Masking release for low- and high-pass-filtered speech in the presence of noise and single-talker interference,” J. Acoust. Soc. Am. 125, 457468.
http://dx.doi.org/10.1121/1.3021299
37.
36. Patterson, R. D. , Allerhand, M. H. , and Giguère, C. (1995). “Time-domain modeling of peripheral auditory processing: A modular architecture and a software platform,” J. Acoust. Soc. Am. 98, 18901894.
http://dx.doi.org/10.1121/1.414456
38.
37. Peters, R. W. , Moore, B. C. J. , and Baer, T. (1998). “Speech reception thresholds in noise with and without spectral and temporal dips for hearing-impaired and normally hearing people,” J. Acoust. Soc. Am. 103, 577587.
http://dx.doi.org/10.1121/1.421128
39.
38. Plomp, R. (1983). “The role of modulation in hearing,” in Hearing—Physiological Bases and Psychophysics, edited by R. Klinke and R. Hartmann (Springer, Berlin), pp. 270276.
40.
39. Rhebergen, K. S. , and Versfeld, N. J. (2005). “A Speech Intelligibility Index-based approach to predict the speech reception threshold for sentences in fluctuating noise for normal-hearing listeners,” J. Acoust. Soc. Am. 117, 21812192.
http://dx.doi.org/10.1121/1.1861713
41.
40. Rhebergen, K. S. , Versfeld, N. J. , and Dreschler, W. A. (2006). “Extended speech intelligibility index for the prediction of the speech reception threshold in fluctuating noise,” J. Acoust. Soc. Am. 120, 39883997.
http://dx.doi.org/10.1121/1.2358008
42.
41. Sek, A. , and Moore, B. C. J. (2003). “Testing the concept of a modulation filter bank: The audibility of component modulation and detection of phase change in three-component modulators,” J. Acoust. Soc. Am. 113, 28012811.
http://dx.doi.org/10.1121/1.1564020
43.
42. Shannon, R. V. , Zeng, F.-G. , Kamath, V. , Wygonski, J. , and Ekelid, M. (1995). “Speech recognition with primarily temporal cues,” Science 270, 303304.
http://dx.doi.org/10.1126/science.270.5234.303
44.
43. Souza, P. , and Rosen, S. (2009). “Effects of envelope bandwidth on the intelligibility of sine- and noise-vocoded speech,” J. Acoust. Soc. Am. 126, 792805.
http://dx.doi.org/10.1121/1.3158835
45.
44. Steeneken, H. J. M. , and Houtgast, T. (1980). “A physical method for measuring speech-transmission quality,” J. Acoust. Soc. Am. 67, 318326.
http://dx.doi.org/10.1121/1.384464
46.
45. Stone, M. A. , Anton, K. , and Moore, B. C. J. (2012a). “Use of high-rate envelope speech cues and their perceptually relevant dynamic range for the hearing impaired,” J. Acoust. Soc. Am. 132, 11411151.
http://dx.doi.org/10.1121/1.4733543
47.
46. Stone, M. A. , Füllgrabe, C. , Mackinnon, R. C. , and Moore, B. C. J. (2011). “The importance for speech intelligibility of random fluctuations in ‘steady’ background noise,” J. Acoust. Soc. Am. 130, 28742881.
http://dx.doi.org/10.1121/1.3641371
48.
47. Stone, M. A. , Füllgrabe, C. , and Moore, B. C. J. (2008). “Benefit of high-rate envelope cues in vocoder processing: Effect of number of channels and spectral region,” J. Acoust. Soc. Am. 124, 22722282.
http://dx.doi.org/10.1121/1.2968678
49.
48. Stone, M. A. , Füllgrabe, C. , and Moore, B. C. J. (2009). “High-rate envelope information in many channels provides resistance to reduction of speech intelligibility produced by multi-channel fast-acting compression,” J. Acoust. Soc. Am. 126, 21552158.
http://dx.doi.org/10.1121/1.3238159
50.
49. Stone, M. A. , Füllgrabe, C. , and Moore, B. C. J. (2010). “Relative contribution to speech intelligibility of different envelope modulation rates within the speech dynamic range,” J. Acoust. Soc. Am. 128, 21272137.
http://dx.doi.org/10.1121/1.3479546
51.
50. Stone, M. A. , Füllgrabe, C. , and Moore, B. C. J. (2012b). “Notionally steady background noise acts primarily as a modulation masker of speech,” J. Acoust. Soc. Am. 132, 317326.
http://dx.doi.org/10.1121/1.4725766
52.
51. Stuart, A. , Phillips, D. P. , and Green, W. B. (1995). “Word recognition performance in continuous and interrupted broad-band noise by normal-hearing and simulated hearing-impaired listeners,” Am. J. Otol. 16, 658663.
53.
52. Studebaker, G. A. , and Sherbecoe, R. L. (2002). “Intensity-importance functions for band-limited monosyllabic words,” J. Acoust. Soc. Am. 111, 14221436.
http://dx.doi.org/10.1121/1.1445788
54.
53. Watson, C. S. (2005). “Some comments on informational masking,” Acta Acust. Acust. 91, 502512.
55.
54. Wojcicki, K. K. , and Loizou, P. C. (2012). “Channel selection in the modulation domain for improved speech intelligibility in noise,” J. Acoust. Soc. Am. 131, 29042913.
http://dx.doi.org/10.1121/1.3688488
http://aip.metastore.ingenta.com/content/asa/journal/jasa/135/4/10.1121/1.4868392
Loading
/content/asa/journal/jasa/135/4/10.1121/1.4868392
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/asa/journal/jasa/135/4/10.1121/1.4868392
2014-04-01
2016-12-06

Abstract

Stone [(2012). J. Acoust. Soc. Am. , 317–326] showed that a masker constructed to produce a near-constant envelope at the output of each auditory filter reduced speech intelligibility less than maskers of the same mean level with fluctuating envelopes, produced by 100% sinusoidal amplitude modulation (SAM) at 8 Hz. Here, this effect was explored for a range of SAM rates from 1 to 81 Hz. Speech was filtered into 28 channels. A sinusoidal masker centered on each channel was added to the channel signal. The maskers were either unmodulated or had 100% SAM. In most conditions, even-numbered channels were presented to one ear and odd-numbered channels to the other. The signal-to-masker ratio was adapted to measure the Speech Reception Threshold (SRT) corresponding to 50% correct. The fluctuating masker benefit (FMB), the difference in SRT between the SAM and unmodulated masker, was negative for all SAM frequencies except 1 Hz. Due to the different slopes of the psychometric functions, when SRTs were inferred for more realistic performance levels, 74% or more, FMB was zero or negative for all SAM rates. It is concluded that a positive FMB, when it occurs, is a release from modulation and not energetic masking.

Loading

Full text loading...

/deliver/fulltext/asa/journal/jasa/135/4/1.4868392.html;jsessionid=ttAxxo45JxQcD47YkZM3d8Rl.x-aip-live-03?itemId=/content/asa/journal/jasa/135/4/10.1121/1.4868392&mimeType=html&fmt=ahah&containerItemId=content/asa/journal/jasa
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=asadl.org/jasa/135/4/10.1121/1.4868392&pageURL=http://scitation.aip.org/content/asa/journal/jasa/135/4/10.1121/1.4868392'
Right1,Right2,Right3,