1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Refining a model of hearing impairment using speech psychophysics
Rent:
Rent this article for
Access full text Article
    + View Affiliations - Hide Affiliations
    Affiliations:
    1 Centre for Applied Hearing Research, Department of Electrical Engineering, Technical University of Denmark, Ørsteds Plads, Building 352, DK-2800 Kongens Lyngby, Denmarkmoje@widex.com, tdau@elektro.dtu.dk
    2 Biomedical Engineering and Hearing Research Center, Boston University, 44 Cummington Street, Boston, Massachusetts 02215 oghitza@bu.edu
    a) Author to whom correspondence should be addressed. Also at: Biomedical Engineering and Hearing Research Center, Boston University, 44 Cummington Street, Boston, Massachusetts, 02215. Current address: Widex A/S, Nymoellevej 6, DK-3540 Lynge, Denmark.
    J. Acoust. Soc. Am. 135, EL179 (2014); http://dx.doi.org/10.1121/1.4869256
/content/asa/journal/jasa/135/4/10.1121/1.4869256
1.
1. Brown, G. J. , Ferry, R. T. , and Meddis, R. (2010). “ A computer model of auditory efferent suppression: Implications for the recognition of speech in noise,” J. Acoust. Soc. Am. 127, 943954.
http://dx.doi.org/10.1121/1.3273893
2.
2. Dubno, J. R. , Horwitz, A. R. , and Ahlstrom, J. B. (2007). “ Estimates of basilar-membrane nonlinearity effects on masking of tones and speech,” Ear. Hear. 28, 217.
http://dx.doi.org/10.1097/AUD.0b013e3180310212
3.
3. Ghitza, O. (1993a). “ Adequacy of auditory models to predict human internal representation of speech sounds,” J. Acoust. Soc. Am. 93, 21602171.
http://dx.doi.org/10.1121/1.406679
4.
4. Ghitza, O. (1993b). “ Processing of spoken CVCs in the auditory periphery. I. Psychophysics,” J. Acoust. Soc. Am. 94, 25072516.
http://dx.doi.org/10.1121/1.407386
5.
5. Hanson, H. M. , and Stevens, N. (2002). “ A quasiarticulatory approach to controlling acoustic source parameters in a klatt-type formant synthesizer using HLsyn,” J. Acoust. Soc. Am. 112, 11581182.
http://dx.doi.org/10.1121/1.1498851
6.
6. Jakobson, R. , Fant, C. G. M. , and Halle, M. (1952). “ Preliminaries to speech analysis: The distinctive features and their correlates,” Tech. Rep. 13 (Acoustic Laboratory, MIT, Cambridge, MA).
7.
7. Jepsen, M. L. , and Dau, T. (2011). “ Characterizing auditory processing and perception in individual listeners with sensorineural hearing loss,” J. Acoust. Soc. Am. 129, 262281.
http://dx.doi.org/10.1121/1.3518768
8.
8. Jepsen, M. L. , Ewert, S. D. , and Dau, T. (2008). “ A computational model of human auditory signal processing and perception,” J. Acoust. Soc. Am. 124, 422438.
http://dx.doi.org/10.1121/1.2924135
9.
9. Jürgens, T. , and Brand, T. (2009). “ Microscopic prediction of speech recognition for listeners with normal hearing in noise using an auditory model,” J. Acoust. Soc. Am. 126, 26352648.
http://dx.doi.org/10.1121/1.3224721
10.
10. Lopez-Poveda, E. A. , and Johannesen, P. T. (2012). “ Behavioral estimates of the contribution of inner and outer hair cell dysfunction to individualized audiometric loss,” J. Assoc. Res. Otolaryngol. 13, 485504.
http://dx.doi.org/10.1007/s10162-012-0327-2
11.
10. Lopez-Poveda, E. A. , Johannesen, P. T. , and Merchán, M. A. (2009). “ Estimation of the degree of inner and outer hair cell dysfunction from distortion product otoacoustic emission input/output functions,” Audiolog. Med. 7, 2228.
http://dx.doi.org/10.1080/16513860802622491
12.
11. Lopez-Poveda, E. A. , and Meddis, R. (2001). “ A human nonlinear cochlear filterbank,” J. Acoust. Soc. Am. 110, 31073118.
http://dx.doi.org/10.1121/1.1416197
13.
12. Messing, D. P. , Delhorne, L. , Bruckert, E. , Braida, L. D. , and Ghitza, O. (2009). “ A non-linear efferent-inspired model of the auditory system; matching human confusions in stationary noise,” Speech Commun. 51, 668683.
http://dx.doi.org/10.1016/j.specom.2009.02.002
14.
13. Nelson, D. A. , Schroder, A. C. , and Wojtczak, M. (2001). “ A new procedure for measuring peripheral compression in normal-hearing and hearing-impaired listeners,” J. Acoust. Soc. Am. 110, 20452064.
http://dx.doi.org/10.1121/1.1404439
15.
14. Plomp, R. (1978). “ Auditory handicap of hearing impairment and the limited benefit of hearing aids,” J. Acoust. Soc. Am. 63, 533549.
http://dx.doi.org/10.1121/1.381753
16.
15. Poling, G. L. , Horwitz, A. R. , Ahlstrom, J. B. , and Dubno, J. R. (2012). “ Individual differences in behavioral estimates of cochlear nonlinearities,” J. Assoc. Res. Otolaryngol. 13, 91108.
http://dx.doi.org/10.1007/s10162-011-0291-2
17.
16. Smoorenburg, G. (1992). “ Speech reception in quiet and in noisy conditions by individuals with noise induced hearing loss in relation to their tone audiogram,” J. Acoust. Soc. Am. 91, 421437.
http://dx.doi.org/10.1121/1.402729
18.
17. Voiers, W. D. (1983). “ Evaluating processed speech using the diagnostic rhyme test,” Speech Technol. 1, 3039.
19.
18. Wojtczak, M. , and Oxenham, A. J. (2009). “ Pitfalls in behavioral estimates of basilar-membrane compression in humans,” J. Acoust. Soc. Am. 125, 270281.
http://dx.doi.org/10.1121/1.3023063
http://aip.metastore.ingenta.com/content/asa/journal/jasa/135/4/10.1121/1.4869256
Loading
/content/asa/journal/jasa/135/4/10.1121/1.4869256
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/asa/journal/jasa/135/4/10.1121/1.4869256
2014-03-21
2014-07-23

Abstract

The premise of this study is that models of hearing, in general, and of individual hearing impairment, in particular, can be improved by using speech test results as an integral part of the modeling process. A conceptual iterative procedure is presented which, for an individual, considers measures of sensitivity, cochlear compression, and phonetic confusions using the Diagnostic Rhyme Test (DRT) framework. The suggested approach is exemplified by presenting data from three hearing-impaired listeners and results obtained with models of the hearing impairment of the individuals. The work reveals that the DRT data provide valuable information of the damaged periphery and that the non-speech and speech data are complementary in obtaining the best model for an individual.

Loading

Full text loading...

/deliver/fulltext/asa/journal/jasa/135/4/1.4869256.html;jsessionid=7di2v58233aqu.x-aip-live-06?itemId=/content/asa/journal/jasa/135/4/10.1121/1.4869256&mimeType=html&fmt=ahah&containerItemId=content/asa/journal/jasa
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Refining a model of hearing impairment using speech psychophysics
http://aip.metastore.ingenta.com/content/asa/journal/jasa/135/4/10.1121/1.4869256
10.1121/1.4869256
SEARCH_EXPAND_ITEM