Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/asa/journal/jasa/135/5/10.1121/1.4869086
1.
1. H. Peters, N. Kessissoglou, and S. Marburg, “ Modal decomposition of exterior acoustic-structure interaction,” J. Acoust. Soc. Am. 133(5), 26682677 (2013).
http://dx.doi.org/10.1121/1.4796114
2.
2. A. Antoulas, Approximation of Large-Scale Dynamical Systems (Philadelphia Society for Industrial and Applied Mathematics, Philadelphia, 2005), pp. 1479.
3.
3. K.-J. Bathe, Finite Element Procedures in Engineering Analysis (Prentice Hall, Englewood Cliffs, NJ, 1982), pp. 1736.
4.
4. R. Freund, “ Model reduction methods based on Krylov subspaces,” Acta Numer. 12, 267319 (2003).
http://dx.doi.org/10.1017/S0962492902000120
5.
5. L. Pillage and R. Rohrer, “ Asymptotic waveform evaluation for timing analysis,” IEEE Trans. Comput.-aided Des. Integr. Circuits Syst. 9(4), 352366 (1990).
http://dx.doi.org/10.1109/43.45867
6.
6. P. Feldmann and R. Freund, “ Efficient linear circuit analysis by Padé approximation via the Lanczos process,” IEEE Trans. Comput.-aided Des. Integr. Circuits Syst. 14(5), 639649 (1995).
http://dx.doi.org/10.1109/43.384428
7.
7. M. Malhotra and P. Pinsky, “ Efficient computation of multi-frequency far-field solutions of the Helmholtz equation using Padé approximation,” J. Comput. Acoust. 8(1), 223240 (2000).
http://dx.doi.org/10.1142/S0218396X00000145
8.
8. J. Baumgart, S. Marburg, and S. Schneider, “ Efficient sound power computation of open structures with infinite/finite elements and by means of the Pade–via–Lanczos algorithm,” J. Comput. Acoust. 15, 557577 (2007).
http://dx.doi.org/10.1142/S0218396X07003494
9.
9. H.-L. Liew and P. Pinsky, “ Matrix-Padé via Lanczos solutions for vibrations of fluid–structure interaction,” Int. J. Numer. Methods Eng. 84(10), 11831204 (2010).
http://dx.doi.org/10.1002/nme.2936
10.
10. Z. Bai, “ Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems,” Appl. Numer. Math. 43, 944 (2002).
http://dx.doi.org/10.1016/S0168-9274(02)00116-2
11.
11. R. Puri, D. Morrey, A. Bell, J. Durodola, E. Rudnyi, and J. Korvink, “ Reduced order fully coupled structural–acoustic analysis via implicit moment matching,” Appl. Math. Model. 33(11), 40974119 (2009).
http://dx.doi.org/10.1016/j.apm.2009.02.016
12.
12. R. Puri, D. Morrey, J. Durodola, R. Morgans, and C. Howard, “ A comparison of structural-acoustic coupled reduced order models (ROMS): Modal coupling and implicit moment matching via Arnoldi,” in the 14th International Congress on Sound and Vibration, Cairns, Australia (2007), pp. 18.
13.
13. X. Pan, Y. Tso, and R. Juniper, “ Active control of radiated pressure of a submarine hull,” J. Sound Vib. 311, 224242 (2008).
http://dx.doi.org/10.1016/j.jsv.2007.09.001
14.
14. S. Merz, N. Kessissoglou, R. Kinns, and S. Marburg, “ Passive and active control of the radiated sound power from a submarine excited by propeller forces,” J. Ship Res. 57(1), 5971 (2013).
http://dx.doi.org/10.5957/JOSR.57.1.100049
15.
15. J. Breslin and P. Andersen, Hydrodynamics of Ship Propellers (Cambridge University Press, Cambridge, UK, 1994), pp. 1584.
16.
16. M. Caresta and N. J. Kessissoglou, “ Acoustic signature of a submarine hull under harmonic excitation,” Appl. Acoust. 71, 1731 (2010).
http://dx.doi.org/10.1016/j.apacoust.2009.07.008
17.
17. M. Caresta and N. J. Kessissoglou, “ Structural and acoustic responses of a fluid-loaded cylindrical hull with structural discontinuities,” Appl. Acoust. 70, 954963 (2009).
http://dx.doi.org/10.1016/j.apacoust.2008.11.004
18.
18. M. Junge, D. Brunner, and L. Gaul, “ Solution of FE-BE coupled eigenvalue problems for the prediction of the vibro-acoustic behavior of ship-like structures,” Int. J. Numer. Methods Eng. 87(7), 664676 (2011).
http://dx.doi.org/10.1002/nme.3124
19.
19. H. Peters, S. Marburg, and N. Kessissoglou, “ Structural-acoustic coupling on non-conforming meshes with quadratic shape functions,” Int. J. Numer. Methods Eng. 91(1), 2738 (2012).
http://dx.doi.org/10.1002/nme.4251
20.
20. S. Schneider, “ FE/FMBE coupling to model fluid-structure interaction,” Int. J. Numer. Methods Eng. 76(13), 21372156 (2008).
http://dx.doi.org/10.1002/nme.2399
21.
21. S. Triebenbacher, M. Kaltenbacher, B. Wohlmuth, and B. Flemisch, “ Applications of the mortar finite element method in vibroacoustics and flow induced noise computations,” Acta Acust. Acust. 96, 536553 (2010).
http://dx.doi.org/10.3813/AAA.918305
22.
22. S. Marburg and B. Nolte, Computational Acoustics of Noise Propagation in Fluids (Springer, Berlin, 2008), Chap. 0: A Unified Approach to Finite and Boundary Element Discretization in Linear Time-Harmonic Acoustics, pp. 134.
23.
23. S. Boyd and L. Vandenberghe, Convex Optimization (Cambridge University Press, Cambridge, UK, 2004), pp. 650651.
24.
24. H.-Y. Fan, W.-W. Lin, and P. van Dooren, “ Normwise scaling of second order polynomial matrices,” SIAM J. Matrix Anal. Appl. 26(1), 252256 (2004).
http://dx.doi.org/10.1137/S0895479803434914
25.
25. T. Betcke, “ Optimal scaling of generalized and polynomial eigenvalue problems,” SIAM J. Matrix Anal. Appl. 30(4), 13201338 (2008).
http://dx.doi.org/10.1137/070704769
26.
26. E. Antoniou and S. Vologiannidis, “ A new family of companion forms of polynomial matrices,” Electron. J. Linear Algebra 11, 7887 (2004).
27.
27. F. Tisseur and K. Meerbergen, “ The quadratic eigenvalue problem,” SIAM Rev. 43(2), 235286 (2001).
http://dx.doi.org/10.1137/S0036144500381988
28.
28. M. Junger and D. Feit, Sound, Structures, and their Interaction (MIT Press, Cambridge, MA, 1986), pp. 1375.
29.
29. ANSYS, Theory Reference for the Mechanical APDL and Mechanical Applications, ANSYS Inc., Canonsburg, PA, release 12.1 (2009).
30.
30. K. A. Cunefare, M. N. Currey, M. E. Johnson, and S. J. Elliot, “ The radiation efficiency grouping of free-space acoustic radiation modes,” J. Acoust. Soc. Am. 109, 203215 (2001).
http://dx.doi.org/10.1121/1.1323236
http://aip.metastore.ingenta.com/content/asa/journal/jasa/135/5/10.1121/1.4869086
Loading
/content/asa/journal/jasa/135/5/10.1121/1.4869086
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/asa/journal/jasa/135/5/10.1121/1.4869086
2014-05-01
2016-09-29

Abstract

A numerical technique for modal decomposition of the acoustic responses of structures submerged in a heavy fluid medium using fluid-loaded structural modes is presented. A Krylov subspace model order reduction approach to reduce the computational effort required for a fully coupled finite element/boundary element model is described. By applying the Krylov subspace to only the structural part of the global system of equations for the fully coupled problem, only the frequency independent finite element matrices are reduced. A fluid-loaded cylindrical shell closed at each end by hemispherical end caps is examined. The cylinder is excited by a ring of axial or transverse forces acting at one end. The individual contributions of the cylinder circumferential modes to the sound power and directivity of the radiated sound pressure are observed. The technique presented here provides a tool for greater physical insight into exterior acoustic-structure interaction problems using fully coupled numerical models, with significantly reduced computational effort.

Loading

Full text loading...

/deliver/fulltext/asa/journal/jasa/135/5/1.4869086.html;jsessionid=-LJV18irfFf3I6YXXNwnn8Vw.x-aip-live-03?itemId=/content/asa/journal/jasa/135/5/10.1121/1.4869086&mimeType=html&fmt=ahah&containerItemId=content/asa/journal/jasa
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=asadl.org/jasa/135/5/10.1121/1.4869086&pageURL=http://scitation.aip.org/content/asa/journal/jasa/135/5/10.1121/1.4869086'
Right1,Right2,Right3,