1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Vowel discrimination by hearing infants as a function of number of spectral channelsa)
a)Portions of this work were presented in “Effect of reduced spectral resolution on infant vowel discrimination,” 13th Symposium on Cochlear Implants in Children, Chicago, Illinois, 2011, and “Emergence of discrimination of spectrally reduced syllables in young infants,” 12th International Conference on Cochlear Implants and Other Implantable Auditory Technologies, Baltimore, Maryland, 2012.
Rent:
Rent this article for
Access full text Article
    + View Affiliations - Hide Affiliations
    Affiliations:
    1 Department of Communication Sciences and Disorders, The University of Texas at Dallas, Callier Advanced Hearing Research Center, 1966 Inwood Road, Dallas, Texas 75235
    2 Department of Otolaryngology, Head and Neck Surgery, Indiana University School of Medicine, 699 Riley Hospital Drive/RR044, Indianapolis, Indiana 46202
    3 Departments of Clinical Sciences and Psychiatry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390
    b) Author to whom correspondence should be addressed. Electronic mail: warnerczyz@utdallas.edu
    J. Acoust. Soc. Am. 135, 3017 (2014); http://dx.doi.org/10.1121/1.4870700
/content/asa/journal/jasa/135/5/10.1121/1.4870700
1.
1. Baskent, D. (2006). “ Speech recognition in normal hearing and sensorineural hearing loss as a function of the number of spectral channels,” J. Acoust. Soc. Am. 120, 29082925.
http://dx.doi.org/10.1121/1.2354017
2.
2. Bertoncini, J. , Nazzi, T. , Cabrera, L. , and Lorenzi, C. (2011). “ Six-month-old infants discriminate voicing on the basis of temporal envelope cues (L),” J. Acoust. Soc. Am. 129, 27612764.
http://dx.doi.org/10.1121/1.3571424
3.
3. Bertoncini, J. , Serniclaes, W. , and Lorenzi, C. (2009). “ Discrimination of speech sounds based upon temporal envelope versus fine structure cues in 5- to 7-year-old children,” J. Speech Lang. Hear. Res. 52, 682695.
http://dx.doi.org/10.1044/1092-4388(2008/07-0273)
4.
4. Blamey, P. J. , Barry, J. G. , and Jacq, P. (2001). “ Phonetic inventory development in young cochlear implant users 6 years postoperation,” J. Speech Lang. Hear. Res. 44, 7379.
http://dx.doi.org/10.1044/1092-4388(2001/007)
5.
5. Cohen, L. B. (1972). “ Attention-getting and attention-holding processes of infant visual preferences,” Child Dev. 43, 869879.
http://dx.doi.org/10.2307/1127638
6.
6. Cohen, L. B. , and Amsel, G. (1998). “ Precursors to infants' perception of the causality of a simple event,” Infant Behav. Dev. 21, 713731.
http://dx.doi.org/10.1016/S0163-6383(98)90040-6
7.
7. Cohen, L. B. , DeLoache, J. S. , and Rissman, M. W. (1975). “ The effect of stimulus complexity on infant visual attention and habituation,” Child Dev. 46, 611617.
http://dx.doi.org/10.2307/1128557
8.
8. Dorman, M. F. , and Loizou, P. C. (1997). “ Speech intelligibility as a function of the number of channels of stimulation for normal-hearing listeners and patients with cochlear implants,” Am. J. Otol. 18, S113S114.
9.
9. Dorman, M. F. , and Loizou, P. C. (1998). “ The identification of consonants and vowels by cochlear implant patients using a 6-channel continuous interleaved sampling processor and by normal-hearing subjects using simulations of processors with two to nine channels,” Ear Hear. 19, 162166.
http://dx.doi.org/10.1097/00003446-199804000-00008
10.
10. Dorman, M. F. , Loizou, P. C. , Kemp, L. L. , and Kirk, K. I. (2000). “ Word recognition by children listening to speech processed into a small number of channels: Data from normal-hearing children and children with cochlear implants,” Ear Hear. 21, 590596.
http://dx.doi.org/10.1097/00003446-200012000-00006
11.
11. Dorman, M. F. , Loizou, P. C. , and Rainey, D. (1997). “ Speech intelligibility as a function of the number of channels of stimulation for signal processors using sine-wave and noise-band outputs,” J. Acoust. Soc. Am. 102, 24032411.
http://dx.doi.org/10.1121/1.419603
12.
12. Eilers, R. E. , Wilson, W. R. , and Moore, J. M. (1977). “ Developmental changes in speech discrimination in infants,” J. Speech Hear. Res. 20, 766780.
http://dx.doi.org/10.1044/jshr.2004.766
13.
13. Eimas, P. D. , Siqueland, E. R. , Jusczyk, P. , and Vigorito, J. (1971). “ Speech perception in infants,” Science 171, 303306.
http://dx.doi.org/10.1126/science.171.3968.303
14.
14. Eisenberg, L. S. , Martinez, A. S. , Holowecky, S. R. , and Pogorelsky ,S. (2002). “ Recognition of lexically controlled words and sentences by children with normal hearing and children with cochlear implants,” Ear Hear. 23, 450462.
http://dx.doi.org/10.1097/00003446-200210000-00007
15.
15. Eisenberg, L. S. , Shannon, R. V. , Martinez, A. S. , Wygonski, J. , and Boothroyd, A. (2000). “ Speech recognition with reduced spectral cues as a function of age,” J. Acoust. Soc. Am. 107, 27042710.
http://dx.doi.org/10.1121/1.428656
16.
16. Friesen, L. M. , Shannon, R. V. , Baskent, D. , and Wang, X. (2001). “ Speech recognition in noise as a function of the number of spectral channels: Comparison of acoustic hearing and cochlear implants,” J. Acoust. Soc. Am. 110, 11501163.
http://dx.doi.org/10.1121/1.1381538
17.
17. Fu, Q. J. , Shannon, R. V. , and Wang, X. (1998). “ Effects of noise and spectral resolution on vowel and consonant recognition: Acoustic and electric hearing,” J. Acoust. Soc. Am. 104, 35863596.
http://dx.doi.org/10.1121/1.423941
18.
18. Geers, A. , Brenner, C. , and Davidson, L. (2003). “ Factors associated with development of speech perception skills in children implanted by age five,” Ear Hear. 24, 24S35S.
http://dx.doi.org/10.1097/01.AUD.0000051687.99218.0F
19.
19. Geers, A. , Tobey, E. , Moog, J. , and Brenner, C. (2008). “ Long-term outcomes of cochlear implantation in the preschool years: From elementary grades to high school,” Int. J. Audiol. 47 Suppl. 2, S21S30.
http://dx.doi.org/10.1080/14992020802339167
20.
20. Geers, A. E. , and Hayes, H. (2011). “ Reading, writing, and phonological processing skills of adolescents with 10 or more years of cochlear implant experience,” Ear Hear. 32, 49S59S.
http://dx.doi.org/10.1097/AUD.0b013e3181fa41fa
21.
21. Horowitz, F. D. , Paden, L. , Bhana, K. , and Self, P. (1972). “ An infant control method for studying infant visual fixations,” Dev. Psychol. 7, 90
http://dx.doi.org/10.1037/h0032855
22.
22. Houston, D. M. , Horn, D. L. , Qi, R. , Ting, J. , and Gao, S. (2007). “ Assessing speech discrimination in individual infants,” Infancy 12, 119145.
http://dx.doi.org/10.1111/j.1532-7078.2007.tb00237.x
23.
23. Houston-Price, C. , and Nakai, S. (2004). “ Distinguishing novelty and familiarity effects in infant preference procedures,” Infant Child Dev. 13, 341348.
http://dx.doi.org/10.1002/icd.364
24.
24. Hunter, M. , and Ames, E. (1988). “ A multifactor model of infant preferences for novel and familiar stimuli,” in Advances in Infancy Research, edited by C. Rovee-Collier and L. P. Lipsitt (Greenwood, Stamford, CT), pp. 6995.
25.
25. Jusczyk, P. , Luce, P. A. , and Charles-Luce, J. (1994). “ Infants' sensitvity to phonotactic patterns in the native language,” J. Mem. Lang. 33, 630645.
http://dx.doi.org/10.1006/jmla.1994.1030
26.
26. Jusczyk, P. W. (1985). “ On characterizing the development of speech perception,” in Neonate Cognition: Beyond the Blooming, Buzzing Confusion, edited by J. Mehler and R. Fox (Erlbaum, Mahwah, NJ), pp. 199229.
27.
27. Jusczyk, P. W. , Copan, H. , and Thompson, E. (1978). “ Perception by 2-month-old infants of glide contrasts in multisyllabic utterances,” Percept. Psychophys. 24, 515520.
http://dx.doi.org/10.3758/BF03198777
28.
28. Kuhl, P. K. (1979). “ Speech perception in early infancy: Perceptual constancy for spectrally dissimilar vowel categories,” J. Acoust. Soc. Am. 66, 16681679.
http://dx.doi.org/10.1121/1.383639
29.
29. Loebach, J. L. , and Wickesburg, R. E. (2006). “ The representation of noise vocoded speech in the auditory nerve of the chinchilla: Physiological correlates of the perception of spectrally reduced speech,” Hear. Res. 213, 130144.
http://dx.doi.org/10.1016/j.heares.2006.01.011
30.
30. Loizou, P. C. (1998). “ Mimicking the human ear: An overview of signal processing techniques for converting sound to electrical signals in cochlear implants,” IEEE Signal Process. Mag. 15, 101130.
http://dx.doi.org/10.1109/79.708543
31.
31. Mattys, S. L. , Jusczyk, P. W. , Luce, P. A. , and Morgan, J. L. (1999). “ Phonotactic and prosodic effects on word segmentation in infants,” Cognit. Psychol. 38, 465494.
http://dx.doi.org/10.1006/cogp.1999.0721
32.
32. Munson, B. , Donaldson, G. S. , Allen, S. L. , Collison, E. A. , and Nelson, D. A. (2003). “ Patterns of phoneme perception errors by listeners with cochlear implants as a function of overall speech perception ability,” J. Acoust. Soc. Am. 113, 925935.
http://dx.doi.org/10.1121/1.1536630
33.
33. Niparko, J. K. , Tobey, E. A. , Thal, D. J. , Eisenberg, L. S. , Wang, N. Y. , Quittner, A. L. , Fink, N. E. , and the CDaCI Investigative Team (2010). “ Spoken language development in children following cochlear implantation,” J. Am. Med. Assoc. 303, 14981506.
http://dx.doi.org/10.1001/jama.2010.451
34.
34. Nittrouer, S. , and Lowenstein, J. H. (2010). “ Learning to perceptually organize speech signals in native fashion,” J. Acoust. Soc. Am. 127, 16241635.
http://dx.doi.org/10.1121/1.3298435
35.
35. Nittrouer, S. , Lowenstein, J. H. , and Packer, R. R. (2009). “ Children discover the spectral skeletons in their native language before the amplitude envelopes,” J. Exp. Psychol. Hum. Percept. Perform. 35, 12451253.
http://dx.doi.org/10.1037/a0015020
36.
36. Polka, L. , and Werker, J. F. (1994). “ Developmental changes in perception of nonnative vowel contrasts,” J. Exp. Psychol. Hum. Percept. Perform. 20, 421435.
http://dx.doi.org/10.1037/0096-1523.20.2.421
37.
37. Roder, B. J. , Bushnell, E. W. , and Sasseville, A. M. (2000). “ Infants' preferences for familiarity and novelty during the course of visual processing,” Infancy 1, 491507.
http://dx.doi.org/10.1207/S15327078IN0104_9
38.
38. Rosen, S. (1992). “ Temporal information in speech: Acoustic, auditory and linguistic aspects,” Philos. Trans. Roy. Soc. B: Biol. Sci. 336, 367373.
http://dx.doi.org/10.1098/rstb.1992.0070
39.
39. Saffran, J. R. , Aslin, R. N. , and Newport, E. L. (1996). “ Statistical learning by 8-month-old infants,” Science 274, 19261928.
http://dx.doi.org/10.1126/science.274.5294.1926
40.
40. Schvartz, K. C. , Chatterjee, M. , and Gordon-Salant, S. (2008). “ Recognition of spectrally degraded phonemes by younger, middle-aged, and older normal-hearing listeners,” J. Acoust. Soc. Am. 124, 39723988.
http://dx.doi.org/10.1121/1.2997434
41.
41. Shannon, R. V. , Zeng, F. G. , Kamath, V. , Wygonski, J. , and Ekelid, M. (1995). “ Speech recognition with primarily temporal cues,” Science 270, 303304.
http://dx.doi.org/10.1126/science.270.5234.303
42.
42. Souza, P. E. , and Rosen, S. (2009). “ Effects of envelope bandwidth on the intelligibility of sine- and noise-vocoded speech,” J. Acoust. Soc. Am. 126, 792805.
http://dx.doi.org/10.1121/1.3158835
43.
43. Stevens, K. N. (1980). “ Acoustic correlates of some phonetic categories,” J. Acoust. Soc. Am. 68, 836842.
http://dx.doi.org/10.1121/1.384823
44.
44. Stevens, K. N. (1983). “ Acoustic properties used for the identification of speech sounds,” Ann. N.Y. Acad. Sci. 405, 217.
http://dx.doi.org/10.1111/j.1749-6632.1983.tb31613.x
45.
45. Svirsky, M. A. , Stallings, L. M. , Lento, C. L. , Ying, E. , and Leonard, L. B. (2002). “ Grammatical morphologic development in pediatric cochlear implant users may be affected by the perceptual prominence of the relevant markers,” Ann. Otol. Rhinol. Laryngol. Suppl. 189, 109112.
46.
46. Uhler, K. , Yoshinaga-Itano, C. , Gabbard, S. A. , Rothpletz, A. M. , and Jenkins, H. (2011). “ Longitudinal infant speech perception in young cochlear implant users,” J. Am. Acad. Audiol. 22, 129142.
http://dx.doi.org/10.3766/jaaa.22.3.2
47.
47. Werker, J. F. , Gilbert, J. H. , Humphrey, K. , and Tees, R. C. (1981). “ Developmental aspects of cross-language speech perception,” Child Dev. 52, 349355.
http://dx.doi.org/10.2307/1129249
48.
48. Werker, J. F. , Shi, R. , Desjardins, R. , Pegg, J. E. , Polka, L. , and Patterson, M. (1998). “ Three methods for testing infant speech perception,” in Perceptual Development: Visual, Auditory, and Speech Perception in Infancy, edited by A. Slater (Psychology Press, New York), pp. 389420.
49.
49. Werker, J. F. , and Tees, R. C. (1984). “ Cross language speech perception: Evidence for perceptual reorganization during the first year of life,” Infant Behav. Dev. 7, 4963.
http://dx.doi.org/10.1016/S0163-6383(84)80022-3
50.
50. Wetherford, M. J. , and Cohen, L. B. (1973). “ Developmental changes in infant visual preferences for novelty and familiarity,” Child Dev. 44, 416424.
http://dx.doi.org/10.2307/1127994
51.
51. Xu, L. , Thompson, C. S. , and Pfingst, B. E. (2005). “ Relative contributions of spectral and temporal cues for phoneme recognition,” J. Acoust. Soc. Am. 117, 32553267.
http://dx.doi.org/10.1121/1.1886405
52.
52. Xu, L. , and Zheng, Y. (2007). “ Spectral and temporal cues for phoneme recognition in noise,” J. Acoust. Soc. Am. 122, 17581764.
http://dx.doi.org/10.1121/1.2767000
http://aip.metastore.ingenta.com/content/asa/journal/jasa/135/5/10.1121/1.4870700
Loading
/content/asa/journal/jasa/135/5/10.1121/1.4870700
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/asa/journal/jasa/135/5/10.1121/1.4870700
2014-05-01
2014-07-25

Abstract

Reduced spectral resolution negatively impacts speech perception, particularly perception of vowels and consonant place. This study assessed impact of number of spectral channels on vowel discrimination by 6-month-old infants with normal hearing by comparing three listening conditions: Unprocessed speech, 32 channels, and 16 channels. Auditory stimuli (/ti/ and /ta/) were spectrally reduced using a noiseband vocoder and presented to infants with normal hearing via visual habituation. Results supported a significant effect of number of channels on vowel discrimination by 6-month-old infants. No differences emerged between unprocessed and 32-channel conditions in which infants looked longer during novel stimulus trials (i.e., discrimination). The 16-channel condition yielded a significantly different pattern: Infants demonstrated no significant difference in looking time to familiar vs novel stimulus trials, suggesting infants cannot discriminate /ti/ and /ta/ with only 16 channels. Results support effects of spectral resolution on vowel discrimination. Relative to published reports, young infants need more spectral detail than older children and adults to perceive spectrally degraded speech. Results have implications for development of perception by infants with hearing loss who receive auditory prostheses.

Loading

Full text loading...

/deliver/fulltext/asa/journal/jasa/135/5/1.4870700.html;jsessionid=16rd3a1mpvmx0.x-aip-live-06?itemId=/content/asa/journal/jasa/135/5/10.1121/1.4870700&mimeType=html&fmt=ahah&containerItemId=content/asa/journal/jasa
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Vowel discrimination by hearing infants as a function of number of spectral channelsa)
http://aip.metastore.ingenta.com/content/asa/journal/jasa/135/5/10.1121/1.4870700
10.1121/1.4870700
SEARCH_EXPAND_ITEM