Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/asa/journal/jasa/135/6/10.1121/1.4876376
1.
1. T. C. Lieuwen and V. Yang, Combustion Instabilities in Gas Turbine Engines (AIAA, Reston, VA, 2005), pp. 325.
2.
2. X. Li, D. Zhao, J. Li, and Y. Xu, “ Experimental evaluation of anti-sound approach in damping self-sustained thermoacoustics oscillations,” J. Appl. Phys. 114, 204903 (2013).
http://dx.doi.org/10.1063/1.4833238
3.
3. D. Zhao, “ Waste thermal energy harvesting from a convection-driven Rijke-Zhao thermo-acoustic-piezo system,” Energy Convers. Manage. 66, 8797 (2013).
http://dx.doi.org/10.1016/j.enconman.2012.09.025
4.
4. Z. Chow and D. Zhao, “ Thermoacoustic instability of a laminar premixed flame in Rijke tube with a hydrodynamic region,” J. Sound Vib. 332, 34193437 (2013).
http://dx.doi.org/10.1016/j.jsv.2013.01.031
5.
5. S. Li and D. Zhao, “ Heat flux and acoustic power in a convection-driven T-shaped thermoacoustic system,” Energy Convers. Manage. 75, 336347 (2013).
http://dx.doi.org/10.1016/j.enconman.2013.06.028
6.
6. D. Zhao, “ Transient growth of flow disturbances in triggering a Rijke tube combustion instability,” Combust. Flame 159, 21262137 (2012).
http://dx.doi.org/10.1016/j.combustflame.2012.02.002
7.
7. D. Zhao, C. Ji, S. Li, and J. Li, “ Thermodynamic measurement and analysis of dual-temperature thermoacoustic oscillations for energy harvesting application,” Energy 65, 517526 (2014).
http://dx.doi.org/10.1016/j.energy.2013.10.078
8.
8. G. A. Richards, D. L. Straub, and E. H. Robey, “ Passive control of combustion dynamics in stationary gas turbines,” J. Propul. Power 19, 795810 (2003).
http://dx.doi.org/10.2514/2.6195
9.
9. D. Zhao and A. S. Morgans, “ Tuned passive control of combustion instabilities using multiple Helmholtz resonators,” J. Sound Vib. 320, 744757 (2009).
http://dx.doi.org/10.1016/j.jsv.2008.09.006
10.
10. D. Zhao and J. Li, “ Feedback control of combustion instabilities using a Helmholtz resonator with an oscillating volume,” Combust. Sci. Technol. 184, 694716 (2012).
http://dx.doi.org/10.1080/00102202.2012.660224
11.
11. D. J. Bodony and S. K. Lele, “ On using large-eddy simulation for the prediction of noise from cold and heated turbulent jets,” Phys. Fluids 17, 085103 (2005).
http://dx.doi.org/10.1063/1.2001689
12.
12. D. Zhao, “ A real-time plane-wave decomposition algorithm for characterizing perforated liners damping at multiple mode frequencies,” J. Acoust. Soc. Am. 129, 11841192 (2011).
http://dx.doi.org/10.1121/1.3533724
13.
13. D. Zhao, C. A'Barrow, A. S. Morgans, and J. Carrotte, “ Acoustic damping of a Helmholtz resonator with an oscillating volume,” AIAA J. 47, 16721679 (2009).
http://dx.doi.org/10.2514/1.39704
14.
14. U. Ingård and S. Labate, “ Acoustic circulation effects and the nonlinear impedance of orifices,” J. Acoust. Soc. Am. 22, 211218 (1950).
http://dx.doi.org/10.1121/1.1906591
15.
15. I. Hughes and A. Dowling, “ The absorption of sound by perforated linings,” J. Fluid Mech. 218, 299335 (1990).
http://dx.doi.org/10.1017/S002211209000101X
16.
16. X. Jing and X. Sun, “ Experimental investigations of perforated liners with bias flow,” J. Acoust. Soc. Am. 106, 24362441 (1999).
http://dx.doi.org/10.1121/1.428128
17.
17. M. Howe, “ On the theory of unsteady high Reynolds number flow through a circular aperture,” Proc. R. Soc. London, Ser. A. 366, 205223 (1979).
http://dx.doi.org/10.1098/rspa.1979.0048
18.
18. J. D. Eldredge and A. P. Dowling, “ The absorption of axial acoustic waves by a perforated liner with bias flow,” J. Fluid Mech. 485, 307335 (2003).
http://dx.doi.org/10.1017/S0022112003004518
19.
19. D. Zhao, A. S. Morgans, and A. P. Dowling, “ Tuned passive control of acoustic damping of perforated liners,” AIAA J. 49, 725734 (2011).
http://dx.doi.org/10.2514/1.J050613
20.
20. Z. Zhong and D. Zhao, “ Time-domain characterization of the acoustic damping of a perforated liner with bias flow,” J. Acoust. Soc. Am. 132, 271281 (2012).
http://dx.doi.org/10.1121/1.4728197
21.
21. Q. Zhang and D. J. Bodony, “ Numerical investigation and modelling of acoustically excited flow through a circular orifice backed by a hexagonal cavity,” J. Fluid Mech. 693, 367401 (2012).
http://dx.doi.org/10.1017/jfm.2011.537
22.
22. C. K. Tam, H. Ju, M. G. Jones, W. R. Watson, and T. L. Parrott, “ A computational and experimental study of resonators in three dimensions,” J. Sound Vib. 329, 51645193 (2010).
http://dx.doi.org/10.1016/j.jsv.2010.06.005
23.
23. S. Mendez and J. D. Eldredge, “ Acoustic modeling of perforated plates with bias flow for large-eddy simulations,” J. Comput. Phys. 228, 47574772 (2009).
http://dx.doi.org/10.1016/j.jcp.2009.03.026
24.
24. C. K. Tam, K. A. Kurbatskii, K. K. Ahuja, and R. J. Gaeta, Jr., “ A numerical and experimental investigation of the dissipation mechanisms of resonant acoustic liners,” J. Sound Vib. 245, 545557 (2001).
http://dx.doi.org/10.1006/jsvi.2001.3571
25.
25. S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Oxford University Press, Oxford, 2001), pp. 155232.
26.
26. C. Ji and D. Zhao, “ Numerical investigation of acoustically excited flow through an orifice using lattice Boltzmann method,” 19th AIAA/CEAS Aeroacoustics Conference, May 27–29, 2013, Berlin, Germany, AIAA Paper 2013–2127.
27.
27. C. Ji and D. Zhao, “ Lattice Boltzmann simulation of sound absorption of an in-duct orifice,” Proc. Meet. Acoust. 19, 030015 (2013).
http://dx.doi.org/10.1121/1.4799686
28.
28. P. Lew, L. Mongeau, and A. Lyrintzis, “ Noise prediction of a subsonic turbulent round jet using the lattice Boltzmann method,” J. Acoust. Soc. Am. 128, 11181127 (2010).
http://dx.doi.org/10.1121/1.3458846
29.
29. D. Ricot, V. Maillard, and C. Bailly, “ Numerical simulation of unsteady cavity flow using lattice Boltzmann method,” 8th AIAA/CEAS Aeroacoustics Conference, 17–19 June 2002, Breckenridge, CO, AIAA Paper 2002–2532.
30.
30. M. Sanjosé, S. Moreau, M. Kim, and F. Pérot, “ Direct self-noise simulation of the installed controlled diffusion airfoil,” 17th AIAA/CEAS Aeroacoustics Conference, 05–08 June 2011, Portland, OR, AIAA Paper 2011–2716.
31.
31. S. Marié, D. Ricot, and P. Sagaut, “ Comparison between lattice Boltzmann method and Navier–Stokes high order schemes for computational aeroacoustics,” J. Comput. Phys. 228, 10561070 (2009).
http://dx.doi.org/10.1016/j.jcp.2008.10.021
32.
32. P. L. Bhatnagar, E. P. Gross, and M. Krook, “ A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems,” Phys. Rev. 94, 511525 (1954).
http://dx.doi.org/10.1103/PhysRev.94.511
33.
33. H. Chen, S. Chen, and W. H. Matthaeus, “ Recovery of the Navier–Stokes equations using a lattice-gas Boltzmann method,” Phys. Rev. A 45, R5339R5342 (1992).
http://dx.doi.org/10.1103/PhysRevA.45.R5339
34.
34. J. Smagorinsky, “ General circulation experiments with the primitive equations,” Mon. Weather Rev. 91, 99164 (1963).
http://dx.doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
35.
35. V. Bellucci, P. Flohr, and C. O. Paschereit, “ Numerical and experimental study of acoustic damping generated by perforated screens,” AIAA J. 42, 15431549 (2004).
http://dx.doi.org/10.2514/1.9841
36.
36. M. Bouzidi, M. Firdaouss, and P. Lallemand, “ Momentum transfer of a Boltzmann-lattice fluid with boundaries,” Phys. Fluids 13, 34523459 (2001).
http://dx.doi.org/10.1063/1.1399290
37.
37. E. W. S. Kam, R. M. C. So, and R. C. K. Leung, “ Lattice Boltzmann method simulation of aeroacoustics and nonreflecting boundary conditions,” AIAA J. 45, 17031712 (2007).
http://dx.doi.org/10.2514/1.27632
38.
38. A. da Silva, G. Scavone, and A. Lefebvre, “ Sound reflection at the open end of axisymmetric ducts issuing a subsonic mean flow: a numerical study,” J. Sound Vib. 327, 507528 (2009).
http://dx.doi.org/10.1016/j.jsv.2009.06.027
39.
39. P. O'Neill, J. Soria, and D. Honnery, “ The stability of low Reynolds number round jets,” Exp. Fluids. 36, 473483 (2004).
http://dx.doi.org/10.1007/s00348-003-0751-5
40.
40. X. Jing and X. Sun, “ Sound-excited flow and acoustic nonlinearity at an orifice,” Phys. Fluids 14, 268276 (2002).
http://dx.doi.org/10.1063/1.1423934
41.
41. A. F. Seybert and D. F. Ross, “ Experimental determination of acoustic properties using a two-microphone random-excitation technique,” J. Acoust. Soc. Am. 61, 13621370 (1977).
http://dx.doi.org/10.1121/1.381403
42.
42. A. Wilde, “ Calculation of sound generation and radiation from instationary flows,” Comput. Fluids 35, 986993 (2006).
http://dx.doi.org/10.1016/j.compfluid.2005.03.005
43.
43. R. Leung, R. So, M. Wang, and X. Li, “ In-duct orifice and its effect on sound absorption,” J. Sound Vib. 299, 9901004 (2007).
http://dx.doi.org/10.1016/j.jsv.2006.08.001
44.
44. T. Luong, M. S. Howe, and R. S. McGowan, “ On the Rayleigh conductivity of a bias-flow aperture,” J. Fluids Struct. 21, 769778 (2005).
http://dx.doi.org/10.1016/j.jfluidstructs.2005.09.010
45.
45. X. Jing and X. Sun, “ Effect of plate thickness on impedance of perforated plates with bias flow,” AIAA J. 38, 15731578 (2000).
http://dx.doi.org/10.2514/2.1139
46.
46. S. Geller, M. Krafczyk, J. Tolke, S. Turek, and J. Hron, “ Benchmark computations based on lattice-Boltzmann finite element and finite volume methods for laminar flows,” Comput. Fluids 35, 888897 (2006).
http://dx.doi.org/10.1016/j.compfluid.2005.08.009
http://aip.metastore.ingenta.com/content/asa/journal/jasa/135/6/10.1121/1.4876376
Loading
/content/asa/journal/jasa/135/6/10.1121/1.4876376
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/asa/journal/jasa/135/6/10.1121/1.4876376
2014-06-01
2016-12-10

Abstract

In this work, three-dimensional numerical simulations of acoustically excited flow through a millimeter-size circular orifice are conducted to assess its noise damping performance, with particular emphasis on applying the lattice Boltzmann method (LBM) as an alternative computational aeroacoustics tool. The model is intended to solve the discrete lattice Boltzmann equation (LBE) by using the pseudo-particle based technique. The LBE controls the particles associated with collision and propagation over a discrete lattice mesh. Flow variables such as pressure, density, momentum, and internal energy are determined by performing a local integration of the particle distribution at each time step. This is different from the conventional numerical investigation attempting to solve Navier-Stokes (NS) equations by using high order finite-difference or finite-volume methods. Compared with the conventional NS solvers, one of the main advantages of LBM may be a reduced computational cost. Unlike frequency domain simulations, the present investigation is conducted in time domain, and the orifice damping behavior is quantified over a broad frequency range at a time by forcing an oscillating flow with multiple tones. Comparing the numerical results with those obtained from the theoretical models, large eddy simulation, and experimental measurements, good agreement is observed.

Loading

Full text loading...

/deliver/fulltext/asa/journal/jasa/135/6/1.4876376.html;jsessionid=76jjjPJdqg2-od_4mDsFy7uS.x-aip-live-02?itemId=/content/asa/journal/jasa/135/6/10.1121/1.4876376&mimeType=html&fmt=ahah&containerItemId=content/asa/journal/jasa
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=asadl.org/jasa/135/6/10.1121/1.4876376&pageURL=http://scitation.aip.org/content/asa/journal/jasa/135/6/10.1121/1.4876376'
Right1,Right2,Right3,