Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/asa/journal/jasa/135/6/10.1121/1.4879668
1.
1. E. Tijs and E. Druyvesteyn, “ An intensity method for measuring absorption properties in situ,” Acta Acust. Acust. 98, 342353 (2012).
http://dx.doi.org/10.3813/AAA.918518
2.
2. Y. Takahashi, T. Otsuru, and R. Tomiku, “ In situ measurements of surface impedance and absorption coefficients of porous materials using two microphones and ambient noise,” Appl. Acoust. 66, 845865 (2005).
http://dx.doi.org/10.1016/j.apacoust.2004.11.004
3.
3. R. Lanoye, G. Vermeir, and W. Lauriks, “ Measuring the free field acoustic impedance and absorption coefficient of sound absorbing materials with a combined particle velocity-pressure sensor,” J. Acoust. Soc. Am. 119, 28262831 (2006).
http://dx.doi.org/10.1121/1.2188821
4.
4. M. Muller, P. Dietrich, M. Aretz, J. Gemmeren, and M. Vorlander, “ On the in situ impedance measurement with pu-probes—Simulation of the measurement setup,” J. Acoust. Soc. Am. 134, 10621089 (2013).
http://dx.doi.org/10.1121/1.4828910
5.
5. B. Castagnède, A. Moussatov, D. Lafarge, and M. Saeid, “ Low frequency in situ metrology of absorption and dispersion of sound absorbing porous materials based on high power ultrasonic non-linearly demodulated waves,” Appl. Acoust. 69, 634648 (2008).
http://dx.doi.org/10.1016/j.apacoust.2007.01.006
6.
6. C. Nocke, “ In-situ acoustic impedance measurement using a free-field transfer function method,” Appl. Acoust. 59, 253264 (2000).
http://dx.doi.org/10.1016/S0003-682X(99)00004-3
7.
7. P. A. Morgan and G. R. Watts, “ A novel approach to the acoustic characterization of porous road surfaces,” Appl. Acoust. 64, 11711186 (2003)
http://dx.doi.org/10.1016/S0003-682X(03)00085-9
8.
8. E. Mommertz, “ Angle-dependent in-situ measurements of reflection coefficient using a subtraction method,” Appl. Acoust. 46, 251263 (1995).
http://dx.doi.org/10.1016/0003-682X(95)00027-7
9.
9. J. Ducourneau, V. Planeau, J. Chatillon, and A. Nejade, “ Measurement of sound absorption coefficients of flat surfaces in a workshop,” Appl. Acoust. 70, 710721 (2009)
http://dx.doi.org/10.1016/j.apacoust.2008.09.001
10.
10. K. Kimura and K. Yamamoto, “ A method for measuring oblique incidence absorption coefficient of absorptive panels by stretched pulse technique,” Appl. Acoust. 62, 617632 (2001).
http://dx.doi.org/10.1016/S0003-682X(00)00073-6
11.
11. S. M. Hasheminejad and M. Azarpeyvand, “ Modal vibrations of a cylindrical radiator over an impedance plane,” J. Sound Vib. 278, 461477 (2004).
http://dx.doi.org/10.1016/j.jsv.2003.10.039
12.
12. K. M. Li, S. Taherzadeh, and K. Attenborough, “ Sound propagation from a dipole source near an impedance plane,” J. Acoust. Soc. Am. 101, 33433352 (1997).
http://dx.doi.org/10.1121/1.418293
13.
13. K. M. Li and S. Taherzadeh, “ The sound field of an arbitrarily oriented quadrupole near ground surfaces,” J. Acoust. Soc. Am. 102, 20502057 (1997).
http://dx.doi.org/10.1121/1.419654
14.
14. K. M. Li and H. Tao, “ Reflection and transmission of sound from a dipole source near a rigid porous medium,” Acta Acust. Acust. 99, 703715 (2013).
http://dx.doi.org/10.3813/AAA.918649
15.
15. H. M. Hess, K. Attenborough, and N. W. Heap, “ Ground characterization by short-range propagation measurements,” J. Acoust. Soc. Am. 87, 19751986 (1990).
http://dx.doi.org/10.1121/1.399325
16.
16. J. F. Allard, Y. Champoux, and J. Nicolas, “ Pressure variation above a layer of absorbing material and impedance measurement at oblique incidence and low frequencies,” J. Acoust. Soc. Am. 86, 766770 (1989).
http://dx.doi.org/10.1121/1.398198
17.
17. J. Prezelj, P. Lipar, A. Belsak, and M. Čudina, “ On acoustic very near field measurements,” Mech. Syst. Signal Process. 40, 194207 (2013).
http://dx.doi.org/10.1016/j.ymssp.2013.05.008
18.
18. Y. Miki, “ Acoustical properties of porous materials—Modification of D-B model,” J. Acoust. Soc. Jpn. 11, 1924 (1990).
http://dx.doi.org/10.1250/ast.11.19
19.
19. U. Skov and R. Christensen, “ An investigation of loudspeaker simulation efficiency and accuracy using a conventional model, a near-to-far-field transformation and the Rayleigh integral,” in 136th Convention, Berlin, Germany, 26–29 April 2014, Audio Engineering Society, New York.
http://aip.metastore.ingenta.com/content/asa/journal/jasa/135/6/10.1121/1.4879668
Loading
/content/asa/journal/jasa/135/6/10.1121/1.4879668
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/asa/journal/jasa/135/6/10.1121/1.4879668
2014-05-28
2016-10-01

Abstract

A technique for measurements of acoustic properties of a fibrous porous material is proposed in this paper. Proposed technique exploits a directivity pattern of a dipole source in its very near field. Theoretical analysis for the proposed technique is based on the Rayleigh integral with a complex reflection included. Results are compared with results of FEM analysis and show that flow resistivity of a porous material placed in the very near field of the dipole source has significant influence on the sound pressure at its ring. Results provide an excellent starting point for the design of the sensor for sound absorption.

Loading

Full text loading...

/deliver/fulltext/asa/journal/jasa/135/6/1.4879668.html;jsessionid=XIKnAub_qRSykd2Ga8A_Sy_0.x-aip-live-06?itemId=/content/asa/journal/jasa/135/6/10.1121/1.4879668&mimeType=html&fmt=ahah&containerItemId=content/asa/journal/jasa
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=asadl.org/jasa/135/6/10.1121/1.4879668&pageURL=http://scitation.aip.org/content/asa/journal/jasa/135/6/10.1121/1.4879668'
Right1,Right2,Right3,