Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. D. H. Johnson and D. E. Dudgeon, Array Signal Processing: Concepts and Techniques (PRT Prentice Hall, Englewood Cliffs, NJ, 1993), pp. 1512.
2. H. Krim and M. Viberg, “ Two decades of array signal processing research: the parametric approach,” IEEE Signal Process. Mag. 13, 6794 (1996).
3. M. Elad, Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing (Springer, New York, 2010), pp. 1359.
4. S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive Sensing (Springer, New York, 2013), pp. 1589.
5. E. J. Candés, J. Romberg, and T. Tao, “ Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489509 (2006).
6. M. Lustig, D. Donoho, and J. M. Pauly, “ Sparse MRI: The application of compressed sensing for rapid MR imaging,” Magn. Reson. Med. 58, 11821195 (2007).
7. N. Wagner, Y. C. Eldar, and Z. Friedman, “ Compressed beamforming in ultrasound imaging,” IEEE Trans. Signal Process. 60, 46434657 (2012).
8. E. J. Candés and T. Tao, “ Decoding by linear programming,” IEEE Trans. Inf. Theory 51, 42034215 (2005).
9. M. A. Herman and T. Strohmer, “ High-resolution radar via compressed sensing,” IEEE Trans. Signal Process. 57, 22752284 (2009).
10. H. Yao, P. Gerstoft, P. M. Shearer, and C. Mecklenbräuker, “ Compressive sensing of the Tohoku-Oki Mw 9.0 earthquake: Frequency-dependent rupture modes,” Geophys. Res. Lett. 38, 15, doi:10.1029/2011GL049223 (2011).
11. H. Yao, P. M. Shearer, and P. Gerstoft, “ Compressive sensing of frequency-dependent seismic radiation from subduction zone megathrust ruptures,” Proc. Natl. Acad. Sci. U.S.A. 110, 45124517 (2013).
12. J. Romberg, “ Imaging via compressive sampling,” IEEE Signal Process. Mag. 25, 1420 (2008).
13. W. Mantzel, J. Romberg, and K. Sabra, “ Compressive matched-field processing,” J. Acoust. Soc. Am. 132, 90102 (2012).
14. C. Yardim, P. Gerstoft, W. S. Hodgkiss, and J. Traer, “ Compressive geoacoustic inversion using ambient noise,” J. Acoust. Soc. Am. 135, 12451255 (2014).
15. D. Malioutov, M. Çetin, and A. S. Willsky, “ A sparse signal reconstruction perspective for source localization with sensor arrays,” IEEE Trans. Signal Process. 53, 30103022 (2005).
16. G. F. Edelmann and C. F. Gaumond, “ Beamforming using compressive sensing,” J. Acoust. Soc. Am. 130, EL232EL237 (2011).
17. I. F. Gorodnitsky and B. D. Rao, “ Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm,” IEEE Trans. Signal Process. 45, 600616 (1997).
18. E. J. Candés, M. B. Wakin, and S. Boyd, “ Enhancing sparsity by reweighted l1 minimization,” J. Fourier Anal. Appl. 14, 877905 (2008).
19. T. Yardibi, J. Li, P. Stoica, M. Xue, and A. B. Baggeroer, “ Source localization and sensing: A nonparametric iterative adaptive approach based on weighted least squares,” IEEE Trans. Aerosp. Electron. Syst. 46, 425443 (2010).
20. D. L. Donoho, “ Compressed sensing,” IEEE Trans. Inf. Theory 52, 12891306 (2006).
21. E. J. Candes and M. B. Wakin, “ An introduction to compressive sampling,” IEEE Signal Proc. Mag. 25, 2130 (2008).
22. R. G. Baraniuk, “ Compressive sensing,” IEEE Signal Proc. Mag. 24, 118121 (2007).
23. E. J. Candes, “ The restricted isometry property and its implications for compressed sensing,” C. R. Math. Acad. Sci. 346, 589592 (2008).
24. R. G. Baraniuk, M. Davenport, R. DeVore, and M. Wakin, “ A simple proof of the restricted isometry property for random matrices,” Constr. Approx. 28, 253263 (2008).
25. E. J. Candés and T. Tao, “ Near-optimal signal recovery from random projections: Universal encoding strategies?,” IEEE Trans. Inf. Theory 52, 54065425 (2006).
26. S. S. Chen, D. L. Donoho, and M. A. Saunders, “ Atomic decomposition by basis pursuit,” SIAM J. Sci. Comput. 20, 3361 (1998).
27. S. F. Cotter, B. D. Rao, K. Engan, and K. Kreutz-Delgado, “ Sparse solutions to linear inverse problems with multiple measurement vectors,” IEEE Trans. Signal Process. 53, 24772488 (2005).
28. J. A. Tropp, “ Just relax: Convex programming methods for identifying sparse signals in noise,” IEEE Trans. Inf. Theory 52, 10301051 (2006).
29. M. Grant and S. Boyd, “ CVX: Matlab software for disciplined convex programming, version 2.0 beta,” (Last viewed February 3, 2013).
30. M. Grant and S. Boyd, “ Graph implementations for nonsmooth convex programs,” in Recent Advances in Learning and Control, Lecture Notes in Control and Information Sciences, edited by V. Blondel, S. Boyd, and H. Kimura (Springer-Verlag, London, 2008), pp. 95110.
31. S. Boyd and L. Vandenberghe, Convex Optimization (Cambridge University Press, New York, 2004), pp. 1684.
32. H. Van Trees, Optimum Array Processing (Detection, Estimation, and Modulation Theory, Part IV) (Wiley-Interscience, New York, 2002), Chaps. 1–10.
33. J. Capon, “ High-resolution frequency-wavenumber spectrum analysis,” Proc. IEEE 57, 14081418 (1969).
34. R. Schmidt, “ Multiple emitter location and signal parameter estimation,” IEEE Trans. Antennas Propag. 34, 276280 (1986).
35. C. F. Mecklenbräuker, P. Gerstoft, A. Panahi, and M. Viberg, “ Sequential Bayesian sparse signal reconstruction using array data,” IEEE Trans. Signal Process. 61, 63446354 (2013).
36. Y. Chi, L. L. Scharf, A. Pezeshki, and A. R. Calderbank, “ Sensitivity to basis mismatch in compressed sensing,” IEEE Trans. Signal Process. 59, 21822195 (2011).
37. H. Monajemi, S. Jafarpour, M. Gavish, Stat 330/CME 362 Collaboration, and D. L. Donoho, “ Deterministic matrices matching the compressed sensing phase transitions of Gaussian random matrices,” Proc. Natl. Acad. Sci. U.S.A. 110, 11811186 (2013).
38. C. F. Gaumond and G. F. Edelmann, “ Sparse array design using statistical restricted isometry property,” J. Acoust. Soc. Am. 134, EL191EL197 (2013).
39. E. J. Candes, Y. C. Eldar, D. Needell, and P. Randall, “ Compressed sensing with coherent and redundant dictionaries,” Appl. Comput. Harmon. Anal. 31, 5973 (2011).
40. M. Elad, “ Optimized projections for compressed sensing,” IEEE Trans. Signal Process. 55, 56955702 (2007).
41. S. J. Wright, R. D. Nowak, and M. A. T. Figueiredo, “ Sparse reconstruction by separable approximation,” IEEE Trans. Signal Process. 57, 24792493 (2009).
42. H. Cox, “ Multi-rate adaptive beamforming (MRABF),” in Sensor Array and Multichannel Signal Processing Workshop (IEEE, Cambridge, MA, 2000), pp. 306309.
43. M. Bono, B. Shapo, P. McCarty, and R. Bethel, “ Subband energy detection in passive array processing,” DTIC Document, Texas University–Austin Applied Research Labs (2000).
44. H. C. Song, S. Cho, T. Kang, W. S. Hodgkiss, and J. R. Preston, “ Long-range acoustic communication in deep water using a towed array,” J. Acoust. Soc. Am. 129, EL71EL75 (2011).
45. D. R. Hunter and K. Lange, “ A tutorial on MM algorithms,” Am. Stat. 58, 3037 (2004).

Data & Media loading...


Article metrics loading...



Sound source localization with sensor arrays involves the estimation of the direction-of-arrival (DOA) from a limited number of observations. Compressive sensing (CS) solves such underdetermined problems achieving sparsity, thus improved resolution, and can be solved efficiently with convex optimization. The DOA estimation problem is formulated in the CS framework and it is shown that CS has superior performance compared to traditional DOA estimation methods especially under challenging scenarios such as coherent arrivals and single-snapshot data. An offset and resolution analysis is performed to indicate the limitations of CS. It is shown that the limitations are related to the beampattern, thus can be predicted. The high-resolution capabilities and the robustness of CS are demonstrated on experimental array data from ocean acoustic measurements for source tracking with single-snapshot data.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd