Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/asa/journal/jasa/136/1/10.1121/1.4883596
1.
1. Ainslie, M. A. (2010). Principles of Sonar Performance (Springer-Praxis, Chinchester, UK), 283 pp.
2.
2. ANSI (1994). S1.1 1994, American National Standard Acoustical Terminology (Acoustical Society of America, New York), No. R2004, 58 pp.
3.
3. Bjorge, A. , and Tolley, K. A. (2008). “ Harbor porpoise Phocoena phocoena,” in Encyclopedia of Marine Mammals, edited by W. F. Perrin, B. Wursig, and J. G. M. Thewissen (Academic, New York), pp. 530532.
4.
4. Carder, H. M. , and Miller, J. D. (1972). “ Temporary threshold shifts from prolonged exposure to noise,” J. Speech Hear. Res. 15, 603623.
5.
5. Cornsweet, T. N. (1962). “ The staircase method in psychophysics,” J. Acoust. Soc. Am. 75, 485491.
6.
6. Finneran, J. J. , Carder, D. A. , Schlundt, C. E. , and Dear, R. L. (2010). “ Temporary threshold shift in a bottlenose dolphin (Tursiops truncatus) exposed to intermitted tones,” J. Acoust. Soc. Am. 127, 32673272.
http://dx.doi.org/10.1121/1.3377052
7.
7. Finneran, J. J. , Carder, D. A. , Schlundt, C. E. , and Ridgway, S. H. (2005). “ Temporary threshold shift in bottlenose dolphins (Tursiops truncatus) exposed to mid-frequency tones.” J. Acoust. Soc. Am. 118, 26962705.
http://dx.doi.org/10.1121/1.2032087
8.
8. Finneran, J. J. , and Schlundt, C. E. (2010). “ Frequency-dependent and longitudinal changes in noise-induced hearing loss in a bottlenose dolphin (Tursiops truncatus),” J. Acoust. Soc. Am. 128, 567570.
http://dx.doi.org/10.1121/1.3458814
9.
9. Finnenran, J. J. , and Schlundt, C. E. (2013). “ Effects of fatiguing tone frequency on temporary threshold shift in bottlenose dolphins (Tursiops truncatus),” J. Acoust. Soc. Am. 133, 18191826.
http://dx.doi.org/10.1121/1.4776211
10.
10. Finneran, J. J. , Schlundt, C. E. , Branstetter, B. , and Dear, R. L. (2007). “ Assessing temporary threshold shift in a bottlenose dolphin (Tursiops truncatus) using multiple simultaneous auditory evoked potentials,” J. Acoust. Soc. Am. 122, 12491264.
http://dx.doi.org/10.1121/1.2749447
11.
11. Finneran, J. J. , Schlundt, C. E. , Carder, D. A. , Clark, J. A. , Young, J. A. , Gaspin, J. B. , and Ridgway, S. H. (2000). “ Auditory and behavioral responses of bottlenose dolphins (Tursiops truncatus) and a beluga (Delphinapterus leucas) to impulsive sounds resembling distant signatures of underwater explosions,” J. Acoust. Soc. Am. 108, 417431.
http://dx.doi.org/10.1121/1.429475
12.
12. Finneran, J. J. , Schlundt, C. E. , Dear, R. , Carder, D. A. , and Ridgway, S. H. (2002). “ Temporary shift in masked hearing thresholds in odontocetes after exposure to single under-water impulses from a seismic watergun,” J. Acoust. Soc. Am. 111, 29292940.
http://dx.doi.org/10.1121/1.1479150
13.
13. Henserson, D. , Subramaniam, M. , Graton, M. A. , and Saunders, S. S. (1991). “ Impact of noise: The importance of level, duration, and repetition rate,” J. Acoust. Soc. Am. 89, 13501357.
http://dx.doi.org/10.1121/1.400658
14.
14. Kastelein, R. A. , Bunskoek, P. , Hagedoorn, M. , Au, W. W. L. , and de Haan, D. (2002). “ Audiogram of a harbor porpoise (Phocoena phocoena) measured with narrow-band frequency-modulated signals,” J. Acoust. Soc. Am. 112, 334344.
http://dx.doi.org/10.1121/1.1480835
15.
15. Kastelein, R. A. , Gransier, R. , and Hoek, L. (2013a). “ Comparative temporary threshold shifts in a harbor porpoise and harbor seal, and severe shift in a seal,” J. Acoust. Soc. Am. 134, 1316.
http://dx.doi.org/10.1121/1.4808078
16.
16. Kastelein, R. A. , Gransier, R. Hoek, L. , Macleod, A. , and Terhune, J. M. (2012a). “ Hearing threshold shifts and recovery in harbor seals (Phoca vitulina) after octave-band noise exposure at 4 kHz,” J. Acoust. Soc. Am. 132, 27452761.
http://dx.doi.org/10.1121/1.4747013
17.
17. Kastelein, R. A. , Gransier, R. , Hoek, L. , and Olthuis, J. (2012b). “ Temporary threshold shifts and recovery in a harbor porpoise (Phocoena phocoena) after octave-band noise at 4 kHz,” J. Acoust. Soc. Am. 132, 35253537.
http://dx.doi.org/10.1121/1.4757641
18.
18. Kastelein, R. A. , Gransier, R. , Hoek, L. , and Rambags, M. (2013b). “ Hearing frequency thresholds of a harbor porpoise (Phocoena phocoena) temporarily affected by a continuous 1.5 kHz tone,” J. Acoust. Soc. Am. 134, 22862292.
http://dx.doi.org/10.1121/1.4816405
19.
19. Kastelein, R. A. , Hoek, L. , and de Jong, C. A. F. (2011). “ Hearing thresholds of a harbor porpoise (Phocoena phocoena) for sweeps (1–2 kHz and 6–7 kHz bands) mimicking naval sonar signals,” J. Acoust. Soc. Am. 129, 18.
20.
21. Kastelein, R. A. , Hoek, L. , de Jong, C. A. F. , and Wensveen, P. J. (2010). “ The effect of signal duration on the underwater detection thresholds of a harbor porpoise (Phocoena phocoena) for single frequency-modulated tonal signals between 0.25 and 160 kHz,” J. Acoust. Soc. Am. 128, 32113222.
http://dx.doi.org/10.1121/1.3493435
21.
22. Kastelein, R. A. , Steen, N. , Gransier, R. , Wensveen, P. J. , and de Jong, C. A. F. (2012c). “ Threshold received sound pressure levels of single 1–2 kHz and 6–7 kHz up-sweeps and down-sweeps causing startle responses in a harbor porpoise (Phocoena phocoena),” J. Acoust. Soc. Am. 131, 23252333.
http://dx.doi.org/10.1121/1.3682032
22.
25. Lucke, K. , Siebert, U. , Lepper, P. A. , and Blanchet, M. (2009). “ Temporary shift in masked hearing thresholds in a harbor porpoise (Phocoena phocoena) after exposure to seismic airgun stimuli,” J. Acoust Soc. Am. 125, 40604070.
http://dx.doi.org/10.1121/1.3117443
23.
26. Luts, H. , van Dun, B. , Alaerts, J. , and Wouters, J. (2008). “ The influence of the detection paradigm in recording auditory steady-state responses,” Ear Hear. 29, 638650.
http://dx.doi.org/10.1097/AUD.0b013e318174f051
24.
27. Madsen, P. T. (2005). “ Marine mammals and noise: Problems with root mean square sound pressure levels for transients,” J. Acoust. Soc. Am. 117, 39523957.
http://dx.doi.org/10.1121/1.1921508
25.
28. Melnick, W. (1991). “ Human temporary threshold shifts (TTS) and damage risk,” J. Acoust. Soc. Am. 90, 147154.
http://dx.doi.org/10.1121/1.401308
26.
29. Mills, J. H. , Gilbert, R. M. , and Adkins, W. Y. (1979). “ Temporary threshold shift in humans exposed to octave bands of noise for 16 to 24 hours,” J. Acoust. Soc. Am. 65, 12381248.
http://dx.doi.org/10.1121/1.382791
27.
30. Mooney, T. A. , Nachtigall, P. E. , Breese, M. , Vlachos, M. , and Au, W. W. L. (2009a). “ Predicting temporary threshold shift in a bottlenose dolphin (Tursiops truncatus): The effects of noise level and duration,” J. Acoust. Soc. Am. 125, 18161826.
http://dx.doi.org/10.1121/1.3068456
28.
31. Mooney, T. A. , Nachtigall, P. E. , and Vlachos, S. (2009b). “ Sonar-induced temporary hearing loss in dolphins,” Biol. Lett. 5, 565567.
http://dx.doi.org/10.1098/rsbl.2009.0099
29.
32. Nachtigall, P. E. , Pawloski, J. L. , and Au, W. W. L. (2003). “ Temporary threshold shifts and recovery following noise exposure in the Atlantic bottlenosed dolphin (Tursiops truncatus),” J. Acoust. Soc. Am. 113, 34253429.
http://dx.doi.org/10.1121/1.1570438
30.
33. Nachtigall, P. E. , Supin, A. Ya. , Pawloski, J. , and Au, W. W. L. (2004). “ Temporary threshold shifts after noise exposure in the bottlenose dolphin (Tursiops truncatus) measured using evoked auditory potentials,” Mar. Mamm. Sci. 20, 673687.
http://dx.doi.org/10.1111/j.1748-7692.2004.tb01187.x
31.
34. Popov, V. V. , Supin, A. Ya. , Rozhnov, V. V. Nechaev, D. I. , Sysuyeva, E. V. , Klishin, V. O. , Pletenko, M. G. , and Tarakanov, M. B. (2013). “ Hearing threshold shifts and recovery after noise exposure in beluga whales, Delphinapterus leucas,” J. Exp. Biol. 216, 15871596.
http://dx.doi.org/10.1242/jeb.078345
32.
35. Popov, V. V. , Supin, A. Ya. , Wang, D. , Wang, K. , Dong, L. , and Wang, S. (2011). “ Noise-induced temporary threshold shift and recovery in Yangtze finless porpoise Neophocaena phocaenoides asiaeorientalis,” J. Acoust. Soc. Am. 130, 574584.
http://dx.doi.org/10.1121/1.3596470
33.
36. Price, G. R. (1980). “ Implications of a critical level in the ear for assessment of noise hazard at high intensities,” J. Acoust. Soc. Am. 69, 171177.
34.
38. Schlundt, C. E. , Finneran, J. J. , Carder, D. A. , and Ridgway, S. H. (2000). “ Temporary shift in masked hearing thresholds of bottlenose dolphins, Tursiops truncatus, and white whales, Delphinapterus leucas, after exposure to intense tones,” J. Acoust. Soc. Am. 107, 34963508.
http://dx.doi.org/10.1121/1.429420
35.
39. Southall, B. L. , Bowles, A. E. , Ellison, W. T. , Finneran, J. J. , Gentry, R. L. , Greene, C. R. , Jr., Kastak, D. , Ketten, D. R. , Miller, J. H. , Nachtigall, P. E. , Richardson, W. J. , Thomas, J. A. , and Tyack, P. L. (2007). “ Marine mammal noise exposure criteria: Initial scientific recommendations,” Aquat. Mamm. 33, 411521.
http://dx.doi.org/10.1578/AM.33.4.2007.411
36.
40. Syka, J. , and Popelár, J. (1980). “ Hearing threshold shifts from prolonged exposure to noise in guinea pigs,” Hear. Res. 3, 205213.
http://dx.doi.org/10.1016/0378-5955(80)90047-7
37.
41. Yost, W. A. (2007). Fundamentals of Hearing: An Introduction (Academic, New York), 326 pp.
38.
42. Zar, J. H. (1999). Biostatistical Analysis (Prentice-Hall, Upper Saddle River, NJ), 718 pp.
http://aip.metastore.ingenta.com/content/asa/journal/jasa/136/1/10.1121/1.4883596
Loading
/content/asa/journal/jasa/136/1/10.1121/1.4883596
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/asa/journal/jasa/136/1/10.1121/1.4883596
2014-07-01
2016-12-05

Abstract

Safety criteria for underwater low-frequency active sonar sounds produced during naval exercises are needed to protect harbor porpoise hearing. As a first step toward defining criteria, a porpoise was exposed to sequences consisting of series of 1-s, 1–2 kHz sonar down-sweeps without harmonics (as fatiguing noise) at various combinations of average received sound pressure levels (SPLs; 144–179 dB re 1 Pa), exposure durations (1.9–240 min), and duty cycles (5%–100%). Hearing thresholds were determined for a narrow-band frequency-swept sine wave centered at 1.5 kHz before exposure to the fatiguing noise, and at 1–4, 4–8, 8–12, 48, 96, 144, and 1400 min after exposure, to quantify temporary threshold shifts (TTSs) and recovery of hearing. Results show that the inter-pulse interval of the fatiguing noise is an important parameter in determining the magnitude of noise-induced TTS. For the reported range of exposure combinations (duration and SPL), the energy of the exposure (i.e., cumulative sound exposure level; SEL) can be used to predict the induced TTS, if the inter-pulse interval is known. Exposures with equal SEL but with different inter-pulse intervals do not result in the same induced TTS.

Loading

Full text loading...

/deliver/fulltext/asa/journal/jasa/136/1/1.4883596.html;jsessionid=1exYXGQKRngnpz7kGr09OcgD.x-aip-live-02?itemId=/content/asa/journal/jasa/136/1/10.1121/1.4883596&mimeType=html&fmt=ahah&containerItemId=content/asa/journal/jasa
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=asadl.org/jasa/136/1/10.1121/1.4883596&pageURL=http://scitation.aip.org/content/asa/journal/jasa/136/1/10.1121/1.4883596'
Right1,Right2,Right3,