Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.Acoustic Toolbox (2013). (Last viewed 2 January 2014).
2. Ainslie, M. A. (2010). Principles of Sonar Performance Modeling (Springer, Heidelberg).
3. DiNapoli, F. R. , and Mellen, R. M. (1986). “ Low frequency attenuation in the Arctic Ocean,” in Ocean Seismo-Acoustics, edited by T. Akal and J. Berkson (Plenum, New York).
4. Dosso, S. E. , Heard, G. J. , and Vinnis, M. (2002). “ Source bearing estimation in the Arctic Ocean using ice-mounted geophones,” J. Acoust. Soc. Am. 112, 27212734.
5. Gavrilov, A. N. , and Mikhalevsky, P. N. (2006). “ Low-frequency acoustic propagation loss in the Arctic Ocean: Results of the Arctic climate observations using underwater sound experiment,” J. Acoust. Soc. Am. 119, 36943706.
6. Johannessen, O. M. , Sagen, H. , Sandven, S. , and Stark, K. V. (2003). “ Hotspots in ambient noise caused by ice-edge eddies in the Greenland and Barents seas,” IEEE J. Ocean. Eng. 28, 212228.
7. Klinck, H. , Nieukirk, S. L. , Mellinger, D. K. , Klinck, K. , Matsumoto, H. , and Dziak, R. P. (2012). “ Seasonal presence of cetaceans and ambient noise levels in polar waters of the North Atlantic,” J. Acoust. Soc. Am. 132, EL176EL181.
8. Mellberg, L. E. , Johannessen, O. M. , Connors, D. N. , Botseas, G. , and Browning, D. (1987). “ Modeled acoustic propagation through an ice edge eddy in the East Greenland Sea Marginal Ice Zone,” J. Geophys. Res. 92, 68576868, doi:10.1029/JC092iC07p06857.
9. Moore, S. M. , Stafford, K. M. , Melling, H. , Berchok, C. , Wiig, Ø. , Kovacs, K. M. , Lydersen, C. , and Richter-Menge, J. (2012). “ Comparing marine mammal acoustic habitats in Atlantic and Pacific sectors of the High Arctic: Year-long records from Fram Strait and the Chukchi Plateau,” Polar Biol. 35, 475480.
10. Nieukirk, S. L. , Mellinger, D. K. , Moore, S. E. , Klinck, K. , Dziak, R. P. , and Goslin, J. (2012). “ Sounds from airguns and fin whales recorded in the mid-Atlantic Ocean, 1999-2009,” J. Acoust. Soc. Am. 131, 11021112.
11.Norwegian Petroleum Directorate. (2012). “Fact Pages,” (Last viewed 2 January 2014).
12. Renner, A. H. H. , Dumont, D. , Beckers, J. , Gerland, S. , and Haas, C. (2013). “ Improved characterization of sea ice using simultaneous aerial photography and sea ice thickness measurements,” Cold Region Sci. 92, 3747.
13. Roth, E. R. , Hildebrand, J. A. , Wiggins, S. M. , and Ross, D. (2012). “ Underwater ambient noise on the Chukchi Sea continental slope from 2006-2009,” J. Acoust. Soc. Am. 131, 104110.
14. Sakov, P. , Counillon, F. , Bertino, L. , Lisæter, K. A. , Oke, P. R. , and Korablev, A. (2012). “ TOPAZ4: An ocean-sea ice data assimilation system for the North Atlantic and Arctic,” Ocean Sci. 8, 633656.
15. Thode, A. , Kim, K. H. , Greene, C. R. , and Roth, E. (2010). “ Long range transmission loss of broadband seismic pulses in the Arctic under ice-free conditions,” J. Acoust. Soc. Am. 128, EL181EL187.

Data & Media loading...


Article metrics loading...



A sonobuoy field was deployed in the Marginal Ice Zone of the Fram Strait in June 2011 to study the spatial variability of ambient noise. High noise levels observed at 10–200 Hz are attributed to distant (1400 km range) seismic exploration. The noise levels decreased with range into the ice cover; the reduction is fitted by a spreading loss model with a frequency-dependent attenuation factor less than for under-ice interior Arctic propagation. Numerical modeling predicts transmission loss of the same order as the observed noise level reduction and indicates a significant loss contribution from under-ice interaction.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd