Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. B. G. Ferguson and R. J. Wyber, “ Application of acoustic reflection tomography to sonar imaging,” J. Acoust. Soc. Am. 117, 29152928 (2005).
2. T. M. Marston, J. L. Kennedy, and P. L. Marston, “ Coherent and semi-coherent processing of limited-aperture circular synthetic aperture (CSAS) data,” in Proceedings of the 2011 IEEE Oceans Conference (2011), pp. 16.
3. A. D. Friedman, S. K. Mitchell, T. L. Kooij, and K. N. Scarbrough, “ Circular synthetic aperture sonar design,” in Proceedings of the 2005 IEEE Oceans Conference (2005), Vol. 2, pp. 10381045.
4. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), pp. 5761.
5. L. Nanjing, H. Chufeng, L. Ying, and Z. Linxi, “ A new algorithm about transforming from near-field to far-field of radar target scattering,” in ISAPE 2008, IEEE Antennas, Propagation and EM Theory Symposium (2008), pp. 661663.
6. R. C. Waag, F. Lin, T. K. Varslot, and J. P. Astheimer, “ An eigenfunction method for reconstruction of large-scale and high-contrast objects,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 13161332 (2007).
7. F. Simonetti, L. Huang, and N. Duric, “ On the spatial sampling of wave fields with circular ring apertures,” J. Appl. Phys. 101, 083103 (2007).
8. E. G. Williams, Fourier Acoustics (Academic Press, London, 1999), pp. 115121.
9. D. J. Zartman, D. S. Plotnick, T. M. Marston, and P. L. Marston, “ Quasi-holographic processing as an alternative to synthetic aperture sonar imaging,” Proc. Meetings Acoust. 19, 055011 (2013).
10. G. B. Arfken and H. J. Weber, Mathematical Methods for Physicists, 6th ed. (Elsevier, Burlington, 2005), pp. 707723.
11. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, 9th ed. (Dover, New York, 1972), pp. 364365.
12. K. Gipson and P. L. Marston, “ Backscattering enhancements due to reflection of meridional leaky Rayleigh waves at the blunt truncation of a tilted solid cylinder in water: Observations and theory,” J. Acoust. Soc. Am. 106, 16731680 (1999).
13. K. Gipson and P. L. Marston, “ Backscattering enhancements from Rayleigh waves on the flat face of a tilted solid cylinder in water,” J. Acoust. Soc. Am. 107, 112117 (2000).
14. K. L. Williams, S. G. Kargl, E. I. Thorsos, D. S. Burnett, J. L. Lopes, M. Zampolli, and P. L. Marston, “ Acoustic scattering from a solid aluminum cylinder in contact with a sand sediment: Measurements, modeling, and interpretation,” J. Acoust. Soc. Am. 127, 33563371 (2010).

Data & Media loading...


Article metrics loading...



Monostatic circular synthetic aperture sonar (CSAS) images are formed by processing azimuthal angle dependent backscattering from a target at a fixed distance from a collocated source/receiver. Typical CSAS imaging algorithms [Ferguson and Wyber, J. Acoust. Soc. Am. , 2915–2928 (2005)] assume scattering data are taken in the farfield. Experimental constraints may make farfield measurements impractical and thus require objects to be scanned in the nearfield. Left uncorrected this results in distortions of the target image and in the angular dependence of features. A fast approximate Hankel function based algorithm is presented to convert nearfield data to the farfield. Images and spectrograms of an extended target are compared for both cases.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd