Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/asa/journal/jasa/136/2/10.1121/1.4885540
1.
1. M. Hoeijmakers, I. Lopez Arteaga, V. Kornilov, H. Nijmeijer, and P. de Goey, “ Accuracy assessment of thermoacoustic instability modes using binary classification,” Int. J. Spray Comb. Dyn. 5, 201224 (2013)
http://dx.doi.org/10.1260/1756-8277.5.3.201
2.
2. R. M. Munt, “ Acoustic transmission properties of a jet pipe with subsonic jet flow: I. The cold jet reflection coefficient,” J. Sound Vib. 142, 413436 (1990).
http://dx.doi.org/10.1016/0022-460X(90)90659-N
3.
3. A. M. Cargill, “ Low frequency acoustic radiation from a jet pipe—A second order theory,” J. Sound Vib. 83, 339354 (1982).
http://dx.doi.org/10.1016/S0022-460X(82)80097-7
4.
4. S. W. Rienstra, “ A small Strouhal number analysis for acoustic wave-jet flow-pipe interaction,” J. Sound Vib. 86, 539556 (1983).
http://dx.doi.org/10.1016/0022-460X(83)91019-2
5.
5. H. Levine and J. Schwinger, “ On the radiation of sound from an unflanged circular pipe,” Phys. Rev. 73, 383406 (1948).
http://dx.doi.org/10.1103/PhysRev.73.383
6.
6. M. C. A. M. Peters, A. Hirschberg, A. J. Reijnen, and A. P. J. Wijnands, “ Damping and reflection coefficient measurements at low Mach and low Helmholtz numbers,” J. Fluid Mech. 256, 499534 (1993).
http://dx.doi.org/10.1017/S0022112093002861
7.
7. S. Allam and M. Åbom, “ Investigation of damping and radiation using full plane wave decomposition in ducts,” J. Sound Vib. 292, 519534 (2006).
http://dx.doi.org/10.1016/j.jsv.2005.08.016
8.
8. N. Fricker and C. A. Roberts, “ The measurement of acoustic radiation impedance of the open end of a thick walled tube with hot flow,” Acustica 38, 124130 (1975).
9.
9. A. Cummings, “ High temperature effects on the radiation impedance of an unflanged duct exit,” J. Sound Vib. 52, 299304 (1977).
http://dx.doi.org/10.1016/0022-460X(77)90648-4
10.
10. J. R. Mahan, J. G. Cline, and J. D. Jones, “ A temperature correlation for the radiation resistance of a thick-walled circular duct exhausting hot gas,” J. Acoust. Soc. Am. 75, 6371 (1984).
http://dx.doi.org/10.1121/1.390301
11.
11. D. H. Kim and L. L. Koss, “ Sound radiation from a circular duct with axial temperature gradients,” J. Sound Vib. 141, 116 (1990).
http://dx.doi.org/10.1016/0022-460X(90)90509-X
12.
12. H. Tiikoja, J. Lavrentjev, H. Rammal, and M. Åbom, “ Experimental investigation of sound reflection from hot and subsonic flow duct termination,” J. Sound Vib. 333, 788800 (2014).
http://dx.doi.org/10.1016/j.jsv.2013.09.030
13.
13. M. S. Howe, “ Attenuation of sound in a low Mach number nozzle flow,” J. Fluid Mech. 91, 209229 (1979).
http://dx.doi.org/10.1017/S0022112079000124
14.
14. P. O. Witze, “ Centerline velocity decay of compressible free jets,” AIAA J. 12, 417418 (1974).
http://dx.doi.org/10.2514/3.49262
15.
15. C. L. Morfey, “ Amplification of aerodynamic noise by convected flow inhomogeneities,” J. Sound Vib. 31, 391397 (1973).
http://dx.doi.org/10.1016/S0022-460X(73)80255-X
16.
16. F. Obermeier, “ Sound generation by heated subsonic jets,” J. Sound Vib. 41, 463472 (1975).
http://dx.doi.org/10.1016/S0022-460X(75)80109-X
17.
17. A. J. Kempton, “ Heat diffusion as a source of aerodynamic sound,” J. Fluid Mech. 78, 131 (1976).
http://dx.doi.org/10.1017/S0022112076002309
18.
18. J. E. Fowcs Williams, “ Aeroacoustics,” Ann. Rev. Fluid Mech. 9, 447508 (1977).
http://dx.doi.org/10.1146/annurev.fl.09.010177.002311
19.
19. D. C. Pridmore-Brown, “ Sound propagation in a fluid flowing through an attenuating duct,” J. Fluid Mech. 4, 393406 (1958).
http://dx.doi.org/10.1017/S0022112058000537
20.
20. S. D. Savkar, “ Propagation of sound in ducts with shear flow,” J. Sound Vib. 19, 355372 (1971).
http://dx.doi.org/10.1016/0022-460X(71)90695-X
21.
21. A. Pierce, Acoustics (McGraw-Hill, New York, 1980).
22.
22. U. Ingard and V. K. Singhal, “ Effect of flow on the acoustic resonances of an open-ended duct,” J. Acoust. Soc. Am. 58, 788793 (1975).
http://dx.doi.org/10.1121/1.380751
23.
23. D. W. Bechert, “ Sound absorption caused by vorticity shedding demonstrated with a jet flow,” J. Sound Vib. 70, 389405 (1980).
http://dx.doi.org/10.1016/0022-460X(80)90307-7
24.
24. A. Hirschberg and S. W. Rienstra, “ Elements of aeroacoustics,” in Applied Aero-acoustics, Von Karman Lecture series 1994-04 (Von Karman Institute for Fluid Dynamics, Rhodes-St. Genese, Belgium, 1994).
25.
25. A. R. da Silva, G. P. Scavone, and A. Lefebvre, “ Sound reaction at the open end of axisymmetric ducts issuing a subsonic mean flow: A numerical study,” J. Sound Vib. 327, 507552 (2009).
http://dx.doi.org/10.1016/j.jsv.2009.06.027
26.
26. S. Boij and B. Nilsson, “ Reflection of sound at area expansions in a flow duct,” J. Sound. Vib. 260, 477498 (2003).
http://dx.doi.org/10.1016/S0022-460X(02)00950-1
http://aip.metastore.ingenta.com/content/asa/journal/jasa/136/2/10.1121/1.4885540
Loading
/content/asa/journal/jasa/136/2/10.1121/1.4885540
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/asa/journal/jasa/136/2/10.1121/1.4885540
2014-07-11
2016-09-28

Abstract

The influence of convection and temperature on the radiation impedance of an open duct termination exhausting a hot gas is commonly described by a complex theory. A simplified analytical expression is proposed for low frequencies. Both models assume a free jet with uniform velocity bounded by infinitely thin shear layers. The convective velocity that should be assumed when applying these models to a non-uniform outflow is uncertain. A simplified version of the so-called Vortex Sound Theory demonstrates that the convective velocity one should assume is lower than the jet centerline velocity.

Loading

Full text loading...

/deliver/fulltext/asa/journal/jasa/136/2/1.4885540.html;jsessionid=nlyM-eKklu_ku3R32XNKt53m.x-aip-live-03?itemId=/content/asa/journal/jasa/136/2/10.1121/1.4885540&mimeType=html&fmt=ahah&containerItemId=content/asa/journal/jasa
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=asadl.org/jasa/136/2/10.1121/1.4885540&pageURL=http://scitation.aip.org/content/asa/journal/jasa/136/2/10.1121/1.4885540'
Right1,Right2,Right3,