Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/asa/journal/jasa/136/4/10.1121/1.4896416
1.
1. Bertaccini, D. , and Sisto, R. (2011). “ Fast numerical solution of nonlinear nonlocal cochlear models,” J. Comput. Phys. 230, 25752587.
http://dx.doi.org/10.1016/j.jcp.2010.12.035
2.
2. Catmull, E. , and Rom, R. (1974). “ A class of local interpolating splines,” in Computer Aided Geometric Design, edited by R. E. Barnhill, and R. F. Reisenfeld ( Academic Press, San Diego, CA), pp. 317326.
3.
3. DeRose, T. D. , and Barsky, B. A. (1988). “ Geometric continuity, shape parameters, and geometric constructions for catmull-rom splines,” ACM T. Graphic. 7, 141.
http://dx.doi.org/10.1145/42188.42265
4.
4. Diependaal, R. J. , Duifhuis, H. , Hoogstraten, H. , and Viergever, M. A. (1987). “ Numerical methods for solving one-dimensional cochlear models in the time domain,” J. Acoust. Soc. Am. 82, 1655–1666.
http://dx.doi.org/10.1121/1.395157
5.
5. Dormand, J. R. , and Prince, P. J. (1980). “ A family of embedded runge-kutta formulae,” J. Comput. Appl. Math. 6, 1926.
http://dx.doi.org/10.1016/0771-050X(80)90013-3
6.
6. Elliott, S. J. , Ku, E. M. , and Lineton, B. (2007). “ A state space model for cochlear mechanics,” J. Acoust. Soc. Am. 122, 27592771.
http://dx.doi.org/10.1121/1.2783125
7.
7. Epp, B. , Verhey, J. L. , and Mauermann, M. (2010). “ Modeling cochlear dynamics: Interrelation between cochlea mechanics and psychoacoustics,” J. Acoust. Soc. Am. 128, 18701883.
http://dx.doi.org/10.1121/1.3479755
8.
8. Greenwood, D. D. (1961). “ Critical bandwidth and the frequency coordinates of the basilar membrane,” J. Acoust. Soc. Am. 33, 13441356.
http://dx.doi.org/10.1121/1.1908437
9.
9. Rapson, M. J. , Tapson, J. C. , and Karpul, D. (2012). “ Unification and extension of monolithic state space and iterative cochlear models,” J. Acoust. Soc. Am. 131, 39353952.
http://dx.doi.org/10.1121/1.3699238
10.
10. Santurette, S. , Dau, T. , and Oxenham, A. J. (2012). “ On the possibility of a place code for the low pitch of high-frequency complex tones,” J. Acoust. Soc. Am. 132, 38833895.
http://dx.doi.org/10.1121/1.4764897
11.
11. Shera, C. A. (2001). “ Intensity-invariance of fine time structure in basilar-membrane click responses: Implications for cochlear mechanics,” J. Acoust. Soc. Am. 110, 332348.
http://dx.doi.org/10.1121/1.1378349
12.
12. Søndergaard, P. , and Majdak, P. (2013). “ The auditory modeling toolbox,” in The Technology of Binaural Listening, edited by J. Blauert ( Springer, New York), pp. 3356.
13.
13. Takanen, M. , Santala, O. , and Pulkki, V. (2014). “ Visualization of functional count-comparison-based binaural auditory model output,” Hearing Res. 309, 147163.
http://dx.doi.org/10.1016/j.heares.2013.10.004
14.
14. Van Hengel, P. (1996). “ Emissions from cochlear modelling,” Ph.D. thesis, Rijksuniversiteit, Groningen, Netherlands.
15.
15. Verhulst, S. (2010). “ Characterizing and modeling dynamic processes in the cochlea using otoacoustic emissions,” Ph.D. thesis, Technical University of Denmark, Kongens Lyngby, Denmark.
16.
16. Verhulst, S. , Bharadwaj, H. , Mehraei, G. , and Shinn-Cunningham, B. (2013). “ Understanding hearing impairment through model predictions of brainstem responses,” Proc. Meet. Acoust. 19, 050182.
http://dx.doi.org/10.1121/1.4800566
17.
17. Verhulst, S. , Dau, T. , and Shera, C. A. (2012). “ Nonlinear time-domain cochlear model for transient stimulation and human otoacoustic emission,” J. Acoust. Soc. Am. 132, 38423848.
http://dx.doi.org/10.1121/1.4763989
18.
18. Zweig, G. (1991). “ Finding the impedance of the organ of corti,” J. Acoust. Soc. Am. 89, 12291254.
http://dx.doi.org/10.1121/1.400653
http://aip.metastore.ingenta.com/content/asa/journal/jasa/136/4/10.1121/1.4896416
Loading
/content/asa/journal/jasa/136/4/10.1121/1.4896416
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/asa/journal/jasa/136/4/10.1121/1.4896416
2014-09-25
2016-10-01

Abstract

This paper presents an efficient method to compute the numerical solutions of transmission-line (TL) cochlear models, and its application on the model of Verhulst The stability region of the model is extended by adopting a variable step numerical method to solve the system of ordinary differential equations that describes it, and by adopting an adaptive scheme to take in account variations in the system status within each numerical step. The presented method leads to improve simulations numerical accuracy and large computational savings, leading to employ TL models for more extensive simulations than currently possible.

Loading

Full text loading...

/deliver/fulltext/asa/journal/jasa/136/4/1.4896416.html;jsessionid=POzvRVFz3_7f3O8ZnayBMo3I.x-aip-live-06?itemId=/content/asa/journal/jasa/136/4/10.1121/1.4896416&mimeType=html&fmt=ahah&containerItemId=content/asa/journal/jasa
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=asadl.org/jasa/136/4/10.1121/1.4896416&pageURL=http://scitation.aip.org/content/asa/journal/jasa/136/4/10.1121/1.4896416'
Right1,Right2,Right3,