Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/asa/journal/jasa/136/5/10.1121/1.4896567
1.
1. G. L. Jones and D. R. Kobett, “ Interaction of elastic waves in an isotropic solid,” J. Acoust. Soc. Am. 35, 5 (1963).
http://dx.doi.org/10.1121/1.1918405
2.
2. F. R. Rollins, “ Interaction of ultrasonic waves in solid media,” Appl. Phys. Lett. 2(8), 147148 (1963).
http://dx.doi.org/10.1063/1.1753818
3.
3. P. A. Johnson, T. J. Shankland, R. J. O'Connell, and J. N. Albright, “ Nonlinear generation of elastic waves in crystalline rock,” J. Geophys. Res.: Solid Earth 92(B5), 35973602, doi:10.1029/JB092iB05p03597 (1987).
http://dx.doi.org/10.1029/JB092iB05p03597
4.
4. V. A. Korneev and A. Demcenko, “ Possible second-order nonlinear interactions of plane waves in an elastic solid,” J. Acoust. Soc. Am. 135(2), 591598 (2014).
http://dx.doi.org/10.1121/1.4861241
5.
5. M. H. Liu, G. X. Tang, L. J. Jacobs, and J. Qu, “ Measuring acoustic nonlinearity parameter using collinear wave mixing,” J. Appl. Phys. 112(2) 024908 (2012).
http://dx.doi.org/10.1063/1.4739746
6.
6. G. Tang, M. Liu, L. J. Jacobs, and J. Qu, “ Detecting localized plastic strain by a scanning collinear wave mixing method,” J. Nondestr. Eval. 33, 196204 (2014).
http://dx.doi.org/10.1007/s10921-014-0224-1
7.
7. J. P. Jiao, J. J. Sun, N. Li, G. R. Song, B. Wu, and C. F. “He, Micro-crack detection using a collinear wave mixing technique,” NDT & E Int. 62, 122129 (2014).
http://dx.doi.org/10.1016/j.ndteint.2013.12.004
8.
8. A. Demcenko, R. Akkerman, P. B. Nagy, and R. Loendersloot, “ Non-collinear wave mixing for non-linear ultrasonic detection of physical ageing in pvc,” NDT & E Int. 49, 3439 (2012).
http://dx.doi.org/10.1016/j.ndteint.2012.03.005
9.
9. A. J. Croxford, P. D. Wilcox, B. W. Drinkwater, and P. B. Nagy, “ The use of non-collinear mixing for nonlinear ultrasonic detection of plasticity and fatigue,” J. Acoust. Soc. Am. 126(5), EL117EL122 (2009).
http://dx.doi.org/10.1121/1.3231451
10.
10. E. Escobar-Ruiz, A. Ruiz, W. Hassan, D. C. Wright, I. J. Collison, P. Cawley, and P. B. Nagy, “ Non-linear ultrasonic NDE of titanium diffusion bonds,” J. Nondestr. Eval. 33(2), 187195 (2014).
http://dx.doi.org/10.1007/s10921-013-0217-5
11.
11. A. Demcenko, V. Koissin, and V. A. Korneev, “ Noncollinear wave mixing for measurement of dynamic processes in polymers: Physical ageing in thermoplastics and epoxy cure,” Ultrasonics 54(2), 684693 (2014).
http://dx.doi.org/10.1016/j.ultras.2013.09.011
12.
12. G. X. Tang, L. J. Jacobs, and J. Qu, “ Scattering of time-harmonic elastic waves by an elastic inclusion with quadratic nonlinearity,” J. Acoust. Soc. Am. 131(4), 25702578 (2012).
http://dx.doi.org/10.1121/1.3692233
13.
13. M. Dubuget, R. E. Guerjouma, S. Dubois, J. C. Baboux, and A. Vincent, “ Characterization of the non-linear elastic properties of aluminium alloys using ultrasonic evaluation under load,” Mater. Sci. Forum 217–222, 951956 (1996).
http://dx.doi.org/10.4028/www.scientific.net/MSF.217-222.951
14.
14. C. Valle, M. Niethammer, J. Qu, and L. J. Jacobs, “ Crack characterization using guided circumferential waves,” J. Acoust. Soc. Am. 110(3), 12821290 (2001).
http://dx.doi.org/10.1121/1.1385899
15.
15. C. Valle, J. Qu, and L. J. Jacobs, “ Guided circumferential waves in layered cylinders,” Int. J. Eng. Sci. 37(11), 13691387 (1999).
http://dx.doi.org/10.1016/S0020-7225(98)00133-5
http://aip.metastore.ingenta.com/content/asa/journal/jasa/136/5/10.1121/1.4896567
Loading
/content/asa/journal/jasa/136/5/10.1121/1.4896567
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/asa/journal/jasa/136/5/10.1121/1.4896567
2014-11-01
2016-09-25

Abstract

This paper derives a set of necessary and sufficient conditions for generating resonant waves by two propagating time-harmonic plane waves. It is shown that in collinear mixing, a resonant wave can be generated either by a pair of longitudinal waves, in which case the resonant mixing wave is also a longitudinal wave, or by a pair of longitudinal and transverse waves, in which case the resonant wave is a transverse wave. In addition, the paper obtains closed-form analytical solutions to the resonant waves generated by two collinearly propagating sinusoidal pulses. The results show that amplitude of the resonant pulse is proportional to the mixing zone size, which is determined by the spatial lengths of the input pulses. Finally, numerical simulations based on the finite element method and experimental measurements using one-way mixing are conducted. It is shown that both numerical and experimental results agree well with the analytical solutions.

Loading

Full text loading...

/deliver/fulltext/asa/journal/jasa/136/5/1.4896567.html;jsessionid=44HyWrGiX_LdogW_y2yh7R0k.x-aip-live-02?itemId=/content/asa/journal/jasa/136/5/10.1121/1.4896567&mimeType=html&fmt=ahah&containerItemId=content/asa/journal/jasa
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=asadl.org/jasa/136/5/10.1121/1.4896567&pageURL=http://scitation.aip.org/content/asa/journal/jasa/136/5/10.1121/1.4896567'
Right1,Right2,Right3,