Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. D. C. Fritts and M. J. Alexander, “ Gravity wave dynamics and effects in the middle atmosphere,” Rev. Geophys. 41, Art. 1003, doi:10.1029/2001RG000106 (2003).
2. L. G. Evers and H. W. Haak, “ Infrasonic forerunners: Exceptionally fast acoustic phases,” Geophys. Res. Lett. 34, L10806, doi:10.1029/2007GL029353 (2007).
3. C. de Groot-Hedlin, M. A. Hedlin, and K. Walker, “ Finite difference synthesis of infrasound propagation through a windy, viscous atmosphere: Application to a bolide explosion detected by seismic networks,” Geophys. J. Int. 185, 305320 (2011).
4. I. Chunchuzov, S. Kulichkov, O. Popov, and M. Hedlin, “ Modeling propagation of infrasound signals observed by a dense seismic network,” J. Acoust. Soc. Am. 135, 3848 (2014).
5. D. P. Drob, R. R. Meier, J. M. Picone, and M. Garcés, “ Inversion of infrasound signals for passive atmospheric remote sensing,” in Infrasound Monitoring for Atmospheric Studies, edited by A. Le Pichon, E. Blanc, and A. Hauchecorne ( Springer, New York, 2010), pp. 701732.
6. J. D. Assink, R. Waxler, W. G. Frazier, and J. Lonzaga, “ The estimation of upper atmospheric wind model updates from infrasound data,” J. Geophys. Res.: Atmos. 118, 1070710724 (2013).
7. M. L. V. Pitteway and C. O. Hines, “ The viscous damping of atmospheric gravity waves,” Can. J. Phys. 41, 19351948 (1963).
8. G. S. Golitsyn, “ Damping of small oscillations in the atmosphere due to viscosity and thermal conductivity,” Izv., Acad. Sci., USSR, Atmos. Oceanic Phys. (Engl. Transl.) 1, 8289 (1965).
9. S. H. Francis, “ Acoustic-gravity modes and large-scale traveling ionospheric disturbances of a realistic, dissipative atmosphere,” J. Geophys. Res. 78, 22782301, doi:10.1029/JA078i013p02278 (1973).
10. E. E. Gossard and W. H. Hooke, Waves in the Atmosphere ( Elsevier, Amsterdam, 1975), pp. 168170, 215–250.
11. S. L. Vadas and M. J. Nicolls, “ The phases and amplitudes of gravity waves propagating and dissipating in the thermosphere: Theory,” J. Geophys. Res. 117, A05322, doi:10.1029/2011JA017426 (2012).
12. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6, Fluid Mechanics, 2nd ed. ( Elsevier, Oxford, 2004), pp. 12, 44–51, 192–196, 300–305.
13. A. E. Gill, Atmosphere–Ocean Dynamics ( Academic Press, New York, 1982), pp. 4550, 169–175.
14. L. M. Brekhovskikh and O. A. Godin, Acoustics of Layered Medium. 1: Plane and Quasi-Plane Waves, 2nd ed. ( Springer, Berlin, 1998), pp. 144147, 192–204.
15. L. C. Sutherland and H. E. Bass, “ Atmospheric absorption in the atmosphere up to 160 km,” J. Acoust. Soc. Am. 115, 10121032 (2004).
16. O. A. Godin, “ Incompressible wave motion of compressible fluids,” Phys. Rev. Lett. 108, 194501 (2012).
17. O. A. Godin, “ Shear waves in inhomogeneous, compressible fluids in a gravity field,” J. Acoust. Soc. Am. 135, 10711082 (2014).
18. H. E. Bass, C. H. Hetzer, and R. Raspet, “ On the speed of sound in the atmosphere as a function of altitude and frequency,” J. Geophys. Res. 112, D15110, doi:10.1029/2006JD007806 (2007).
19. R. A. Akmaev, “ Whole atmosphere modeling: Connecting terrestrial and space weather,” Rev. Geophys. 49, RG4004, doi:10.1029/2011RG000364 (2011).
20. N. A. Zabotin, O. A. Godin, P. C. Sava, and L. Y. Zabotina, “ Tracing three-dimensional acoustic wavefronts in inhomogeneous, moving media,” J. Comput. Acoust. 25, Art. 1450002 (2014).

Data & Media loading...


Article metrics loading...



Acoustic-gravity waves in the middle and upper atmosphere and long-range propagation of infrasound are strongly affected by air viscosity and thermal conductivity. To characterize the wave dissipation, it is typical to consider idealized environments, which admit plane-wave solutions. Here, an asymptotic approach is developed that relies instead on the assumption that spatial variations of environmental parameters are gradual. It is found that realistic assumptions about the atmosphere lead to rather different predictions for wave damping than do the plane-wave solutions. A modification to the Sutherland-Bass model of infrasound absorption is proposed.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd