Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. Dai, H. , and Wright, B. A. (1995). “ Detecting signals of unexpected or uncertain durations,” J. Acoust. Soc. Am. 98, 798806.
2. Dai, H. , and Wright, B. A. (1999). “ Predicting the detectability of tones with unexpected durations,” J. Acoust. Soc. Am. 105, 20432046.
3. Delgutte, B. (1987). “ Peripheral auditory processing of speech information: Implications from a physiological study of intensity discrimination,” in The Psychophysics of Speech Perception, edited by M. E. H. Schouten ( Nijhoff, Dordrecht), pp. 333353.
4. Delgutte, B. (1995). “ Physiological models for basic auditory percepts,” in Auditory Computation, edited by H. L. Hawkins, T. A. McMullen, A. N. Popper, and R. R. Fay ( Springer, New York), pp. 157220.
5. Egan, J. P. (1975). Signal Detection Theory and ROC Analysis ( Academic Press, New York).
6. Geisler, W. S. , Albrecht, D. G. , Salvi, R. J. , and Saunders, S. S. (1991). “ Discrimination performance of single neurons: Rate and temporal-pattern information,” J. Neurophys. 66, 334362.
7. Green, D. M. , and Swets, J. A. (1966). Signal Detection Theory and Psychophysics ( Wiley, New York).
8. Haight, F. A. (1967). Handbook of the Poisson Distributions ( Wiley, New York).
9. Kidd, G. , Jr., Mason, C. R. , and Dai, H. (1995). “ Discriminating coherence in spectro-temporal patterns,” J. Acoust. Soc. Am. 97, 37823790.
10. Liberman, C. M. (1978). “ Auditory-nerve response from cats raised in a low-noise chamber,” J. Acoust. Soc. Am. 63, 442455.
11. Macmillan, N. A. , and Creelman, C. D. (2005). Detection Theory: A User's Guide, 2nd ed. ( Erlbaum, Mahwah, NJ).
12. Rieke, F. , Warland, D. , de Ruyter van Steveninck, R. , and Bialek, W. (1999). Spikes: Exploring the Neural Code ( MIT Press, Cambridge).
13. Siebert, W. M. (1968). “ Stimulus transformations in the peripheral auditory system,” in Recognizing Patterns, edited by P. A. Kollers and M. Eden ( MIT Press, Cambridge), pp. 104133.
14. Viemeister, N. F. (1988). “ Psychophysical aspects of intensity discrimination,” in Auditory Function: Neurobiological Bases of Hearing, edited by G. M. Edelman, W. E. Gall, and W. M. Cowan ( Wiley, New York), pp. 213241.
15. Viemeister, N. F. , Shivapuja, B. G. , and Recio, A. (1992). “ Physiological correlates of temporal integration,” in Auditory Physiology and Perception, edited by Y. Cazáis, L. Demany, and K. Horner ( Pergamon, Oxford), pp. 323329.
16. Viemeister, N. F. , and Wakefield, G. H. (1991). “ Temporal integration and multiple looks,” J. Acoust. Soc. Am. 90, 858865.
17. Winslow, R. L. , and Sachs, M. B. (1988). “ Single-tone intensity discrimination based on auditory-nerve rate responses in backgrounds of quiet, noise, and with stimulation of the crossed olivocochlear bundle,” Hear. Res. 35, 165190.
18. Young, E. D. , and Barta, P. E. (1986). “ Rate responses of auditory nerve fibers to tone in noise near masked threshold,” J. Acoust. Soc. Am. 79, 426442.

Data & Media loading...


Article metrics loading...



The optimal integration of information from independent Poisson sources (such as neurons) was analyzed in the context of a two-interval, forced-choice detection task. When the mean count of the Poisson distribution is above 1, the benefit of integration is closely approximated by the predictions based on the square-root law of the Gaussian model. When the mean count falls far below 1, however, the benefit of integration clearly exceeds the predictions based on the square-root law.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd