Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/asa/journal/jasa/137/3/10.1121/1.4913781
1.
1. A. J. Buckler, L. Bresolin, N. R. Dunnick, and D. C. Sullivan, “ Quantitative imaging test approval and biomarker qualification: Interrelated but distinct activities,” Radiology 259, 875884 (2011).
http://dx.doi.org/10.1148/radiol.10100800
2.
2. A. J. Buckler, L. Bresolin, N. R. Dunnick, and D. C. Sullivan, “ A collaborative enterprise for multi-stakeholder participation in the advancement of quantitative imaging,” Radiology 258, 906914 (2011).
http://dx.doi.org/10.1148/radiol.10100799
3.
3. M. F. Insana, T. J. Hall, J. G. Wood, and Z. Y. Yan, “ Renal ultrasound using parametric imaging techniques to detect changes in microstructure and function,” Invest. Radiol. 28, 720725 (1993).
http://dx.doi.org/10.1097/00004424-199308000-00013
4.
4. E. J. Feleppa, T. Liu, M. C. Shao, N. Fleshner, V. Reuter, and W. R. Fair, “ Ultrasonic spectral-parameter imaging of the prostrate,” Int. J. Imag. Syst. Technol. 8, 1125 (1997).
http://dx.doi.org/10.1002/(SICI)1098-1098(1997)8:1<11::AID-IMA3>3.0.CO;2-W
5.
5. F. L. Lizzi, M. Astor, T. Liu, C. Deng, D. J. Coleman, and R. H. Silverman, “ Ultrasonic spectrum analysis for tissue assays and therapy evaluation,” Int. J. Imag. Syst. Technol. 8, 310 (1997).
http://dx.doi.org/10.1002/(SICI)1098-1098(1997)8:1<3::AID-IMA2>3.0.CO;2-E
6.
6. R. M. Vlad, S. Brand, A. Giles, M. C. Kolios, and G. J. Czarnota, “ Quantitative ultrasound characterization of responses to radiotherapy in cancer mouse models,” Clin. Cancer Res. 15, 20672075 (2009).
http://dx.doi.org/10.1158/1078-0432.CCR-08-1970
7.
7. M. L. Oelze, W. D. O'Brien, Jr., J. P. Blue, and J. F. Zachary, “ Differentiation and characterization of rat mammary fiboradenomas and 4T1 mouse carcinomas using quantitative ultrasound imaging,” IEEE Trans. Med. Imag. 23, 764771 (2004).
http://dx.doi.org/10.1109/TMI.2004.826953
8.
8. J. Mamou, A. Coron, M. L. Oelze, E. Saegusa-Beecroft, M. Hata, P. Lee, E. J. Machi, E. Yanagihara, P. Laugier, and E. J. Feleppa, “ Three-dimensional high-frequency backscatter and envelope quantification of cancerous human lymph nodes,” Ultrasound Med. Biol. 37, 345357 (2011).
http://dx.doi.org/10.1016/j.ultrasmedbio.2010.11.020
9.
9. J. P. Kemmerer and M. L. Oelze, “ Ultrasonic assessment of thermal therapy in rat liver,” Ultrasound Med. Biol. 38, 21302137 (2012).
http://dx.doi.org/10.1016/j.ultrasmedbio.2012.07.024
10.
10. G. Ghoshal, R. J. Lavarello, J. P. Kemmerer, R. J. Miller, and M. L. Oelze, “ Ex vivo study of quantitative ultrasound parameters in fatty rabbit livers,” Ultrasound Med. Biol. 38, 22382248 (2012).
http://dx.doi.org/10.1016/j.ultrasmedbio.2012.08.010
11.
11. J. P. Kemmerer, G. Ghoshal, C. Karunakaran, and M. L. Oelze, “ Assessment of high-intensity focused ultrasound treatment of rodent mammary tumors using ultrasound backscatter coefficients,” J. Acoust. Soc. Am. 134, 15591568 (2013).
http://dx.doi.org/10.1121/1.4812877
12.
12. V. C. Anderson, “ Sound scattering from a fluid sphere,” J. Acoust. Soc. Am. 22, 426431 (1950).
http://dx.doi.org/10.1121/1.1906621
13.
13. J. J. Faran, Jr., “ Sound scattering by solid cylinders and spheres,” J. Acoust. Soc. Am. 23, 405418 (1951).
http://dx.doi.org/10.1121/1.1906780
14.
14. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light ( Pergamon, New York, 1975), pp. 1986.
15.
15. A. Ishimaru, Wave Propagation and Scattering in Random Media ( Academic, New York, 1978), pp. 1504.
16.
16. K. P. K. Shung and G. A. Thieme, Ultrasonic Scattering in Biological Tissues ( CRC Press, Boca Raton, FL, 1993), pp. 1486.
17.
17. M. F. Insana, R. F. Wagner, D. G. Brown, and T. J. Hall, “ Describing small-scale structure in random media using pulse-echo ultrasound,” J. Acoust. Soc. Am. 87, 179192 (1990).
http://dx.doi.org/10.1121/1.399283
18.
18. P. Debye and A. M. Bueche, “ Scattering by an inhomogeneous solid,” J. Appl. Phys. 20, 518525 (1949).
http://dx.doi.org/10.1063/1.1698419
19.
19. M. L. Oelze and W. D. O'Brien, Jr., “ Application of three scattering models to the characterization of solid tumors in mice,” Ultrason. Imag. 28, 8396 (2006).
http://dx.doi.org/10.1177/016173460602800202
20.
20. C. W. Manry and S. L. Broschat, “ FDTD simulations for ultrasound propagation in a 2-D breast model,” Ultrason. Imag. 18, 2534 (1996).
http://dx.doi.org/10.1177/016173469601800103
21.
21. T. D. Mast, L. M. Hinkleman, M. J. Orr, V. W. Sparrow, and R. C. Waag, “ Simulation of ultrasonic pulse propagation through the abdominal wall,” J. Acoust. Soc. Am. 102, 11771190 (1997).
http://dx.doi.org/10.1121/1.421015
22.
22. T. E. Doyle, A. T. Tew, K. H. Warnick, and B. L. Carruth, “ Simulation of elastic wave scattering in cells and tissues at the microscopic level,” J. Acoust. Soc. Am. 125, 17511767 (2009).
http://dx.doi.org/10.1121/1.3075569
23.
23. J. Mamou, M. L. Oelze, W. D. O'Brien, Jr., and J. F. Zachary, “ Identifying ultrasonic scattering sites from three-dimensional impedance maps,” J. Acoust. Soc. Am. 117, 413423 (2005).
http://dx.doi.org/10.1121/1.1810191
24.
24. J. Mamou, M. L. Oelze, W. D. O'Brien, Jr., and J. F. Zachary, “ Extended three-dimensional impedance map methods for identifying ultrasonic scattering sites,” J. Acoust. Soc. Am. 123, 11951208 (2008).
http://dx.doi.org/10.1121/1.2822658
25.
25. P. L. Marston, “ Scattering of a Bessel beam by a sphere,” J. Acoust. Soc. Am. 121, 753758 (2007).
http://dx.doi.org/10.1121/1.2404931
26.
26. P. L. Marston, “ Scattering of a Bessel beam by a sphere: II. Helicoidal case and spherical shell example,” J. Acoust. Soc. Am. 124, 29052910 (2008).
http://dx.doi.org/10.1121/1.2973230
27.
27. F. G. Mitri, “ Equivalence of expressions for the acoustic scattering of a progressive high-order Bessel beam by an elastic sphere,” IEEE. Trans. Ultrason., Ferroelectr., Freq. Control 56, 11001103 (2009).
http://dx.doi.org/10.1109/TUFFC.2009.1143
28.
28. F. G. Mitri, “ Generalized theory of resonance excitation by sound scattering from an elastic spherical shell in a nonviscous fluid,” IEEE. Trans. Ultrason., Ferroelectr., Freq. Control 59, 17811790 (2012).
http://dx.doi.org/10.1109/TUFFC.2012.2382
29.
29. F. G. Mitri, “ Interaction of an acoustical quasi-Gaussian beam with a rigid sphere: Linear axial scattering, instantaneous force, and time-averaged radiation force [Correspondence],” IEEE Trans. Ultrason., Ferroelectr., Freq. Control 59, 23472351 (2012).
http://dx.doi.org/10.1109/TUFFC.2012.2460
30.
30. F. G. Mitri, “ Arbitrary scattering of an acoustical high-order Bessel trigonometric (non-vortex) beam by a compressible soft fluid sphere,” Ultrasonics 53, 956961 (2013).
http://dx.doi.org/10.1016/j.ultras.2012.12.008
31.
31. A. J. Hesford, J. P. Astheimer, and R. C. Waag, “ Acoustic scattering by arbitrary distributions of disjoint, homogeneous cylinders or spheres,” J. Acoust. Soc. Am. 127, 28832893 (2010).
http://dx.doi.org/10.1121/1.3372641
32.
32. T. K. Stanton, “ Simple approximate formulas for backscattering of sound by spherical and elongated objects,” J. Acoust. Soc. Am. 86, 14991510 (1989).
http://dx.doi.org/10.1121/1.398711
33.
33. T. K. Stanton, “ Sound scattering by spherical and elongated shelled bodies,” J. Acoust. Soc. Am. 88, 16191633 (1990).
http://dx.doi.org/10.1121/1.400321
34.
34. J. A. Jensen, “ A model for the propagation and scattering of ultrasound in tissue,” J. Acoust. Soc. Am. 89, 182190 (1991).
http://dx.doi.org/10.1121/1.400497
35.
35. J. M. Mari, R. Blu, O. B. Matar, M. Unser, and C. Cachard, “ A bulk modulus dependent linear model for acoustical imaging,” J. Acoust. Soc. Am. 125, 24132419 (2009).
http://dx.doi.org/10.1121/1.3087427
36.
36. R. J. Zemp, C. K. Abbey, and M. F. Insana, “ Linear systems models for ultrasonic imaging: Application to signal statistics,” IEEE Trans. Ultrason., Ferroelectr., Freq. Control 50, 642654 (2003).
http://dx.doi.org/10.1109/TUFFC.2003.1209551
37.
37. J. A. Jensen, “ Field: A program for simulated ultrasound system,” Med. Biol. Eng. Comput. 34, 351353 (1996).
38.
38. J. A. Jensen and N. B. Svendsen, “ Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers,” IEEE Trans. Ultrason., Ferroelectr., Freq. Control 39, 262267 (1992).
http://dx.doi.org/10.1109/58.139123
39.
39. M. Gyöngy, L. Balogh, K. Szalai, and I. Kalló, “ Histology-based simulations of ultrasonic imaging,” Ultrasound Med. Biol. 39, 19251929 (2013).
http://dx.doi.org/10.1016/j.ultrasmedbio.2013.05.005
40.
40. K. A. Wear, “ Measurement of dependence of backscatter coefficient from cylinders on frequency and diameter using focused transducers—with application to trabecular bone,” J. Acoust. Soc. Am. 115, 6672 (2004).
http://dx.doi.org/10.1121/1.1631943
http://aip.metastore.ingenta.com/content/asa/journal/jasa/137/3/10.1121/1.4913781
Loading
/content/asa/journal/jasa/137/3/10.1121/1.4913781
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/asa/journal/jasa/137/3/10.1121/1.4913781
2015-03-01
2016-09-26

Abstract

Quantitative ultrasound techniques are generally applied to characterize media whose scattering sites are considered to be small compared to a wavelength. In this study, the backscattered response of single weakly scattering spheres and cylinders with diameters comparable to the beam width of a 2.25 MHz single-element transducer were simulated and measured in the transducer focal plane to investigate the impact of physically large scatterers. The responses from large single spherical scatterers at the focus were found to closely match the plane-wave response. The responses from large cylindrical scatterers at the focus were found to differ from the plane-wave response by a factor of −1. Normalized spectra from simulations and measurements were in close agreement: the fall-off of the responses as a function of lateral position agreed to within 2 dB for spherical scatterers and to within 3.5 dB for cylindrical scatterers. In both measurement and simulation, single scatterer diameter estimates were biased by less than 3% for a more highly focused transducer compared to estimates for a more weakly focused transducer. The results suggest that quantitative ultrasound techniques may produce physically meaningful size estimates for media whose response is dominated by scatterers comparable in size to the transducer beam.

Loading

Full text loading...

/deliver/fulltext/asa/journal/jasa/137/3/1.4913781.html;jsessionid=Xyp4asr1IuKWnyRL_ugyV7XD.x-aip-live-02?itemId=/content/asa/journal/jasa/137/3/10.1121/1.4913781&mimeType=html&fmt=ahah&containerItemId=content/asa/journal/jasa
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=asadl.org/jasa/137/3/10.1121/1.4913781&pageURL=http://scitation.aip.org/content/asa/journal/jasa/137/3/10.1121/1.4913781'
Right1,Right2,Right3,