Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. K. Plamann, F. Aptel, C. L. Arnold, A. Courjaud, C. Crotti, F. Deloison, F. Druon, P. Georges, M. Hanna, J.-M. Legeais, F. Morin, E. Mottay, V. Nuzzo, D. A. Peyrot, and M. Savoldelli, “ Ultrashort pulse laser surgery of the cornea and the sclera,” J. Opt. 12, 084002 (2010).
2. A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “ Femtosecond-laser-induced nanocavitation in water: Implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100, 038102 (2008).
3. J. Woodworth, I. Molina, D. Nelson, J. Maenchen, G. Sarkisov, J. Blickem, R. Starbird, F. Wilkins, D. Van DeValde, and D. Johnson, “ Green-laser-triggered water switching at 1.6 MV,” IEEE Trans. Dielecr. Electr. Insul. 14, 951957 (2007).
4. T. G. Jones, A. Ting, J. Penano, P. Sprangle, and G. DiComo, “ Remote underwater ultrashort pulse laser acoustic source,” in CThA1, Conference on Lasers and Electro-Optics/Conference on Quantum Electronics and Laser Science 2006 (2006).
5. W. Lauterborn and A. Vogel, Bubble Dynamics and Shock Waves, SHOCKWAVES 8, edited by C. F. Delale ( Springer-Verlag, Berlin, 2013), pp. 67103.
6. F. Blackmon and L. Antonelli, “ Experimental demonstration of multiple pulse nonlinear optoacoustic signal generation and control,” Appl. Opt. 44, 103112 (2005).
7. A. Vogel and W. Lauterborn, “ Acoustic transient generation by laser-produced cavitation bubbles near solid boundaries,” J. Acoust. Soc. Am. 84, 719731 (1988).
8. S. V. Egerev, “ In search of a noncontact underwater acoustic source,” Acoust. Phys. 49, 5161 (2003).
9. S. Sreeja, C. Leela, V. R. Kumar, S. Bagchi, T. S. Prashant, P. Radhakrishnan, S. P. Tewari, S. V. Rao, and P. P. Kiran, “ Dynamics of tightly focused femtosecond laser pulses in water,” Laser Phys. 23, 106002 (2013).
10. M. H. Helle, T. G. Jones, J. R. Penano, D. Kaganovich, and A. Ting, “ Formation and propagation of meter-scale laser filaments in water,” Appl. Phys. Lett. 103, 121101 (2013).
11. N. Chotiros, “ Nonlinear optoacoustic underwater sound source,” Proc. SPIE 0925, 255262 (1988).
12. D. W. Tang, B. L. Zhou, H. Cao, and G. H. He, “ Dynamic thermal expansion under transient laser-pulse heating,” Appl. Phys. Lett. 59, 31133114 (1991).
13. J. Noack and A. Vogel, “ Laser-induced plasma formation in water at nanosecond to femtosecond time scales: Calculation of thresholds, absorption coefficients, and energy density,” IEEE J. Quant. Electron. 35, 11561167 (1999).
14. A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, “ Energy balance of optical breakdown in water at nanosecond to femtosecond time scales,” Appl. Phys. B 68, 271280 (1999).
15. F. V. Potemkin, E. I. Mareev, A. A. Podshivalov, and V. M. Gordienko, “ Laser control of filament-induced shock wave in water,” Laser Phys. Lett. 11, 106001 (2014).
16. T. G. Jones, A. Ting, J. Penano, P. Sprangle, and L. D. Bibee, “ Remote intense laser acoustic source,” NRL Rev. 2007, 121123.
17. R. T. Beyer, Nonlinear Acoustics ( Department of the Navy, Sea Systems Command, Washington, DC, 1974).
18.A secundary acoustic source generated at the air/water surface was also detected when the geometric focus of the lens gets closer to the interface (i.e., for h large).
19. G. Point, Y. Brelet, A. Houard, V. Jukna, C. Milián, J. Carbonnel, Y. Liu, A. Couairon, and A. Mysyrowicz, “ Superfilamentation in air,” Phys. Rev. Lett. 112, 223902 (2014).

Data & Media loading...


Article metrics loading...



Acoustic signals generated in water by terawatt (TW) laser pulses undergoing filamentation are studied. The acoustic signal has a very broad spectrum, spanning from 0.1 to 10 MHz and is confined in the plane perpendicular to the laser direction. Such a source appears to be promising for the development of remote laser based acoustic applications.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd