Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/asa/journal/jasa/137/4/10.1121/1.4915061
1.
1. B. Fornberg, A Practical Guide to Pseudospectral Methods, Cambridge Monographs on Applied and Computational Mathematics ( Cambridge University Press, Cambridge, UK, 1998), 233 pp.
2.
2. M. Hornikx, R. Waxler, and J. Forssén, “ The extended Fourier pseudospectral time-domain method for atmospheric sound propagation,” J. Acoust. Soc. Am. 128, 16321646 (2010).
http://dx.doi.org/10.1121/1.3474234
3.
3. N. Raghuvanshi, R. Narain, and M. Lin, “ Efficient and accurate sound propagation using adaptive rectangular decomposition,” IEEE Trans. Vis. Comp. Graphics 15, 789801 (2009).
http://dx.doi.org/10.1109/TVCG.2009.28
4.
4. R. Mehra, N. Raghuvanshi, L. Savioja, M. Lin, and D. Manocha, “ An efficient GPU-based time domain solver for the acoustic wave equation,” Appl. Acoust. 73, 8394 (2012).
http://dx.doi.org/10.1016/j.apacoust.2011.05.012
5.
5. L. Kinsler, A. Frey, A. Coppens, and J. Sanders, Fundamentals of Acoustics ( Wiley, Hoboken, NJ, 1999), pp. 210-224.
6.
6. C. de Groot-Hedlin, “ Finite-difference time-domain synthesis of infrasound propagation through an absorbing atmosphere,” J. Acoust. Soc. Am. 124, 14301441 (2008).
http://dx.doi.org/10.1121/1.2959736
7.
7. C. Webb and S. Bilbao, “ Computing room acoustics with CUDA - 3D FDTD schemes with boundary losses and viscosity,” in IEEE International Conference on Acoustics, Speech, Signal Processing (2011), pp. 317320.
8.
8. H. Bass, L. Sutherland, A. Zuckerwar, D. Blackstock, and D. Hester, “ Atmospheric absorption of sound: Further developments,” J. Acoust. Soc. Am. 97, 680683 (1995).
http://dx.doi.org/10.1121/1.412989
9.
9. J. W. Thomas, Numerical Partial Differential Equations: Finite Difference Methods ( Springer-Verlag New York, 1995), Vol. 22, pp. 1921.
http://aip.metastore.ingenta.com/content/asa/journal/jasa/137/4/10.1121/1.4915061
Loading
/content/asa/journal/jasa/137/4/10.1121/1.4915061
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/asa/journal/jasa/137/4/10.1121/1.4915061
2015-03-23
2016-09-27

Abstract

For time-domain modeling based on the acoustic wave equation, spectral methods have recently demonstrated promise. This letter presents an extension of a spectral domain decomposition approach, previously used to solve the lossless linear wave equation, which accommodates frequency-dependent atmospheric attenuation and assignment of arbitrary dispersion relations. Frequency-dependence is straightforward to assign when time-stepping is done in the spectral domain, so combined losses from molecular relaxation, thermal conductivity, and viscosity can be approximated with little extra computation or storage. A mode update free from numerical dispersion is derived, and the model is confirmed with a numerical experiment.

Loading

Full text loading...

/deliver/fulltext/asa/journal/jasa/137/4/1.4915061.html;jsessionid=RsGAuXL8htvgkUte5gFKWn20.x-aip-live-02?itemId=/content/asa/journal/jasa/137/4/10.1121/1.4915061&mimeType=html&fmt=ahah&containerItemId=content/asa/journal/jasa
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=asadl.org/jasa/137/4/10.1121/1.4915061&pageURL=http://scitation.aip.org/content/asa/journal/jasa/137/4/10.1121/1.4915061'
Right1,Right2,Right3,