Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/asa/journal/jasa/137/4/10.1121/1.4916796
1.
1. B. G. Ferguson and B. G. Quinn, “ Application of the short-time Fourier transform and the Wigner-Ville distribution to the acoustic localization of aircraft,” J. Acoust. Soc. Am. 96(2), 821827 (1994).
http://dx.doi.org/10.1121/1.410320
2.
2. B. G. Quinn, “ Doppler speed and range estimation using frequency and amplitude estimates,” J. Acoust. Soc. Am. 98(5), 25602566 (1995).
http://dx.doi.org/10.1121/1.413221
3.
3. D. C. Reid, A. M. Zoubir, and B. Boashash, “ Aircraft flight parameter estimation based on passive acoustic techniques using the polynomial Wigner-Ville distribution,” J. Acoust. Soc. Am. 102(1), 207223 (1997).
http://dx.doi.org/10.1121/1.419803
4.
4. H. X. Zou, Y. Q. Chen, J. H. Zhu, Q. H. Dai, G. Q. Wu, and Y. D. Li, “ Steady-motion-based Dopplerlet transform: Application to the estimation of range and speed of a moving sound source,” IEEE J. Ocean. Eng. 29(3), 887905 (2004).
http://dx.doi.org/10.1109/JOE.2004.833229
5.
5. K. W. Lo and B. G. Ferguson, “ Flight parameter estimation using instantaneous frequency measurements from a wide aperture hydrophone array,” IEEE J. Ocean. Eng. 39(4), 607619 (2014).
http://dx.doi.org/10.1109/JOE.2013.2285740
6.
6. B. Boashash, “ Estimating and interpreting the instantaneous frequency of a signal—Part II: Algorithms and applications,” Proc. IEEE 80(4), 540568 (1992).
http://dx.doi.org/10.1109/5.135378
7.
7. V. Katkovnik and L. J. Stankovic, “ Periodogram with varying and data-driven window length,” Signal Process. 67(3), 345358 (1998).
http://dx.doi.org/10.1016/S0165-1684(98)00049-8
8.
8. B. Barkat and B. Boashash, “ Design of higher order polynomial Wigner-Ville distributions,” IEEE Trans. Signal Process. 47(9), 26082611 (1999).
http://dx.doi.org/10.1109/78.782225
9.
9. B. Boashash, Time Frequency Signal Analysis and Processing: A Comprehensive Reference ( Elsevier, London, 2003).
10.
10. Y. Yang, Z. K. Peng, X. J. Dong, W. M. Zhang, and G. Meng, “ General parameterized time-frequency transform,” IEEE Trans. Signal Process. 62(11), 27512764 (2014).
http://dx.doi.org/10.1109/TSP.2014.2314061
11.
11. K. C. Tam, S. K. Tang, and S. K. Lau, “ On the recovery of moving source characteristics using time-frequency approach,” Appl. Acoust. 73(4), 366378 (2012).
http://dx.doi.org/10.1016/j.apacoust.2011.10.012
12.
12. S. Peleg and B. Friedlander, “ The discrete polynomial-phase transform,” IEEE Trans. Signal Process. 43(8), 19011914 (1995).
http://dx.doi.org/10.1109/78.403349
13.
13. S. Barbarossa, A. Scaglione, and G. B. Giannakis, “ Product high-order ambiguity function for multicomponent polynomial-phase signal modeling,” IEEE Trans. Signal Process. 46(3), 691708 (1998).
http://dx.doi.org/10.1109/78.661336
14.
14. P. O'Shea and R. A. Wiltshire, “ A new class of multilinear functions for polynomial phase signal analysis,” IEEE Trans. Signal Process. 57(6), 20962109 (2009).
http://dx.doi.org/10.1109/TSP.2009.2014811
15.
15. Z. K. Peng, G. Meng, F. L. Chu, Z. Q. Lang, W. M. Zhang, and Y. Yang, “ Polynomial chirplet transform with application to instantaneous frequency estimation,” IEEE Trans. Instrumen. Meas. 60(9), 32223229 (2011).
http://dx.doi.org/10.1109/TIM.2011.2124770
16.
16.Available at http://mathworld.wolfram.com/WeierstrassApproximationTheorem.html (Last viewed November 15, 2014).
17.
17. L. R. Rabiner, R. W. Schafer, and C. M. Rader, “ The Chirp z-transform algorithm,” IEEE Trans. Audio Electroacoust. 17(2), 8692 (1969).
http://dx.doi.org/10.1109/TAU.1969.1162034
18.
18.Data available at http://acousticstoday.org/wp-content/uploads/2014/04/truck30sec.wav (Last viewed December 3, 2014).
http://aip.metastore.ingenta.com/content/asa/journal/jasa/137/4/10.1121/1.4916796
Loading
/content/asa/journal/jasa/137/4/10.1121/1.4916796
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/asa/journal/jasa/137/4/10.1121/1.4916796
2015-04-06
2016-12-03

Abstract

The received Doppler signal of a stationary sensor, as emitted by a transiting acoustic source, is used to estimate source motion parameters, including speed, closest distance, rest frequency, and closest point of approach (CPA) time. First, the instantaneous frequency, amplitude, and CPA time are accurately estimated by the polynomial chirplet transform of the Doppler signal. Thereafter, the three other source motion parameters are obtained with a simplified amplitude-weighted nonlinear least squares method. The proposed scheme is successfully applied to the analysis of the characteristics of a moving truck.

Loading

Full text loading...

/deliver/fulltext/asa/journal/jasa/137/4/1.4916796.html;jsessionid=KKzRDXWN-AGHou5pFM6Ky_Nt.x-aip-live-03?itemId=/content/asa/journal/jasa/137/4/10.1121/1.4916796&mimeType=html&fmt=ahah&containerItemId=content/asa/journal/jasa
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=asadl.org/jasa/137/4/10.1121/1.4916796&pageURL=http://scitation.aip.org/content/asa/journal/jasa/137/4/10.1121/1.4916796'
Right1,Right2,Right3,