Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. K. J. Ellefsen, C. H. Cheng, and M. N. Toksoz, “ Applications of perturbation theory to acoustic logging,” J. Geophys. Res. 96, 537549, doi:10.1029/90JB02013 (1991).
2. A. N. Norris and B. K. Sinha, “ Anisotropy-induced coupling in borehole acoustic modes,” J. Geophys. Res. 101, 1594515952, doi:10.1029/96JB01303 (1996).
3. R. K. Mallan, C. Torres-Verdin, and J. Ma, “ Simulation of borehole sonic waveforms in dipping, anisotropic, and invaded formations,” Geophysics 76, E127E139 (2011).
4. T. V. Zharnikov, D. E. Syresin, and C.-J. Hsu, “ Calculating the spectrum of anisotropic waveguides using a spectral method,” J. Acoust. Soc. Am. 134, 17391753 (2013).
5. T. V. Zharnikov and D. E. Syresin, “ Calculating the spectrum of anisotropic waveguides using Riccati equation,” Wave Motion 52, 114 (2015).
6. N. J. Nigro, “ Steady-state wave propagation in infinite bars of noncircular cross section,” J. Acoust. Soc. Am. 40, 15011508 (1966).
7. R. B. Nelson, S. B. Dong, and R. D. Kalra, “ Vibrations and waves in laminated orthotropic circular cylinders,” J. Sound Vib. 18, 429444 (1971).
8. R. Burridge and F. J. Sabina, “ Theoretical computations on ridge acoustic surface waves using the finite-element method,” Electron. Lett. 7, 720722 (1971).
9. O. C. Zienkewicz and R. L. Taylor, The Finite Element Method, 2nd ed. ( Krieger Publishing Company, Inc., Malabar, FL, 1990).
10. K. H. Huang and S.-B. Dong, “ Propagating waves and edge vibrations in anisotropic composite cylinders,” J. Sound Vib. 96, 363379 (1984).
11. S. Finnveden, “ Evaluation of modal density and group velocity by a finite element method,” J. Sound Vib. 273, 5175 (2004).
12. I. Bartoli, A. Marzani, F. L. di Scalea, and E. Viola, “ Modeling wave propagation in damped waveguides of arbitrary cross-section,” J. Sound Vib. 295, 685707 (2006).
13. F. Treyssede and L. Laguerre, “ Numerical and analytical calculation of modal excitability for elastic wave generation in lossy waveguides,” J. Acoust. Soc. Am. 133, 38273837 (2013).
14. K. J. Ellefsen, C. H. Cheng, and M. N. Toksoz, “ Effects of anisotropy upon the normal modes in a borehole,” J. Acoust. Soc. Am. 89, 25972616 (1991).
15. B. K. Sinha and S. Kostek, “ Stress-induced azimuthal anisotropy in borehole flexural waves,” Geophysics 61, 18991907 (1996).
16. H. Uberall, B. Hosten, M. Deschamps, and A. Gerard, “ Repulsion of phase-velocity dispersion curves and the nature of plate vibrations,” J. Acoust. Soc. Am. 96, 908917 (1994).
17. G. C. Everstine, “ A symmetric potential formulation for fluid-structure interaction,” J. Sound Vib. 79, 157160 (1981).

Data & Media loading...


Article metrics loading...



In this letter repulsion of phase-velocity dispersion curves of quasidipole eigenmodes of waveguides with non-circular cross section in non-axisymmetric anisotropic medium is studied by the semi-analytical finite element technique. Borehole waveguide is used as an example. The modeling helps in clarifying the nature of this phenomenon, which is accompanied by the rotation of the orientation of two quasidipole modes with frequency and by the exchange of their behavior at near-crossover point. The dispersion curves cross only in the presence of exact symmetry. Such a scenario is the alternative to the stress-induced anisotropy crossing of dispersion curves.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd