Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. E. A. Okal, “ The generation of T waves by earthquakes,” in Advances in Geophysics, edited by R. Dmowska ( Academic, San Diego, 2008), Vol. 49, pp. 165.
2. J. Guilbert, J. Vergoz, E. Schisselé, A. Roueff, and Y. Cansi, “ Use of hydroacoustic and seismic arrays to observe rupture propagation and source extent of the mw = 9.0 Sumatra earthquake,” Geo. Res. Lett. 32, L15310 (2005).
3. J. Talandier and E. A. Okal, “ Monochromatic T waves from underwater volcanoes in the Pacific Ocean: Ringing witnesses to geyser processes?,” Bull. Seis. Soc. Am. 86, 15291544 (1996).
4. J. H. Haxel and R. P. Dziak, “ Evidence of explosive seafloor volcanic activity from the Walvis Ridge, South Atlantic Ocean,” Geo. Res. Lett. 32, L13609 (2005).
5. D. Reymond, O. Hyvernaud, J. Talandier, and E. A. Okal, “ T-wave detection of two underwater explosions off Hawaii on 13 April 2000,” Bull. Seis. Soc. Am. 93, 804816 (2003).
6. R. P. Dziak, D. R. Bohnenstiehl, H. Matsumoto, C. G. Fox, D. K. Smith, M. Tolstoy, T.-K. Lau, J. H. Haxel, and M. J. Fowler, “ P- and T-wave detection thresholds, Pn velocity estimate, and detection of lower mantle and core P-waves on ocean sound-channel hydrophones at the Mid-Atlantic Ridge,” Bull. Seis. Soc. Am. 94, 665677 (2004).
7. J. Talandier and E. A. Okal, “ On the mechanism of conversion of seismic waves to and from T waves in the vicinity of island shores,” Bull. Seis. Soc. Am. 88, 621632 (1998).
8. N. R. Chapman and R. Marrett, “ The directionality of acoustic T-phase signals from small magnitude submarine earthquakes,” J. Acoust. Soc. Am. 119, 36693675 (2006).
9. R. P. Dziak, “ Empirical relationship of T-wave energy and fault parameters of northeast Pacific Ocean earthquakes,” Geo. Res. Lett. 28, 25372540 (2001).
10. E. A. Okal, “ T-phase stations for the international monitoring system of the comprehensive nuclear-test ban treaty: A global perspective,” Seis. Res. Lett. 72, 186196 (2001).
11. E. A. Okal, P. Alsset, O. Hyvernaud, and F. Schindelé, “ The deficient T waves of tsunami earthquakes,” Geophys. J. Int. 152, 416432 (2003).
12. C. D. de Groot-Hedlin and J. A. Orcutt, “ Excitation of T-phases by seafloor scattering,” J. Acoust. Soc. Am. 109, 19441954 (2001).
13. P.-F. Piserchia, J. Virieux, D. Rodrigues, S. Gaffet, and J. Talandier, “ Hybrid numerical modelling of T-wave propagation: Application to the Midplate experiment,” Geophys. J. Int. 133, 789800 (1998).
14. J. L. Stephens, G. E. Baker, R. W. Cook, G. D'Spain, L. P. Berger, and S. M. Day, “ Empirical and numerical modeling of T-phase propagation from ocean to land,” Pure Appl. Geophys. 158, 531565 (2001).
15. Y. Cansi and N. Bethoux, “ T waves with long inland paths: Synthetic seismograms,” J. Geophys. Res. 90, 54595465, doi:10.1029/JB090iB07p05459 (1985).
16. Z. Upton, M. D. Collins, and J. Pulli, “ Hydroacoustic blockage prediction and measurement at Diego Garcia using the Adiabatic Mode Parabolic Equation Model,” J. Acoust. Soc. Am. 123, 3942 (2008).
17. S. D. Frank, R. I. Odom, and J. M. Collis, “ Elastic parabolic equation solutions for underwater acoustic problems using seismic sources,” J. Acoust. Soc. Am. 133, 13581367 (2013).
18. J. M. Collis, W. L. Siegmann, F. B. Jensen, M. Zampolli, E. T. Küsel, and M. D. Collins, “ Parabolic equation solution of seismo-acoustics problems involving variations in bathymetry and sediment thickness,” J. Acoust. Soc. Am. 123, 5155 (2008).
19. M. Park, R. I. Odom, and D. J. Soukup, “ Modal scattering: A key to understanding oceanic T-waves,” Geo. Res. Lett. 28, 34013404 (2001).
20. W. Jerzak, W. L. Siegmann, and M. D. Collins, “ Modeling Rayleigh and Stoneley waves and other interface and boundary effects with the parabolic equation,” J. Acoust. Soc. Am. 117, 34973503 (2005).
21. H. Kolsky, Stress Waves in Solids ( Dover, New York, 1963), p. 8.
22. M. D. Collins, “ Higher-order Padé approximations for accurate and stable elastic parabolic equations with application to interface wave propagation,” J. Acoust. Soc. Am. 89, 10501057 (1991).
23. J. D. Schneiderwind, J. M. Collis, and H. J. Simpson, “ Elastic Pekeris waveguide normal mode solution comparisons against laboratory data,” J. Acoust. Soc. Am. 132, EL182EL188 (2012).
24. W. M. Ewing, W. S. Jardetzky, and F. Press, Elastic Waves in Layered Media ( McGraw-Hill, New York, 1957), p. 8.
25. M. D. Collins, “ A higher-order parabolic equation for wave propagation in an ocean overlying an elastic bottom,” J. Acoust. Soc. Am. 86, 14591464 (1989).
26. D. A. Outing, W. L. Siegmann, M. D. Collins, and E. K. Westwood, “ Generalization of the rotated parabolic equation to variable slopes,” J. Acoust. Soc. Am. 120, 35343538 (2006).
27. E. T. Küsel, W. L. Siegmann, and M. D. Collins, “ A single-scattering correction for large contrasts in elastic layers,” J. Acoust. Soc. Am. 121, 808813 (2007).
28. M. D. Collins, “ The rotated parabolic equation and sloping ocean bottoms,” J. Acoust. Soc. Am. 87, 10351037 (1990).
29. M. D. Collins, J. P. Lingevitch, and W. L. Siegmann, “ Wave propagation in poro-acoustic media,” Wave Motion 25, 265272 (1997).
30. B. A. McCollom and J. M. Collis, “ Root finding in the complex plane for seismo-acoustic propagation scenarios with Green's function solutions,” J. Acoust. Soc. Am. 136, 10361045 (2014).
31. L. Tolstoy and W. M. Ewing, “ The T phase of shallow-focus earthquakes,” Bull. Seis. Soc. Am. 40, 2552 (1950).
32. F. B. Jensen, W. A. Kuperman, M. B. Porter, and H. Schmidt, “ Computational Ocean Acoustics,” in Modern Acoustics and Signal Processing, 2nd ed., edited by R. T. Beyer ( Springer, New York, 2011), pp. 8688, 358.
33. R. H. Johnson and R. A. Norris, “ T-phase radiators in the Western Aleutians,” Bull. Seis. Soc. Am. 58, 110 (1968).
34. P. D. Slack, C. G. Fox, and R. P. Dziak, “ P wave detection thresholds, Pn velocity estimates, and T wave location uncertainty from oceanic hydrophones,” J. Geophys. Res. 104, 1306113072, doi:10.1029/1999JB900112 (1999).
35. D. A. Walker, C. S. McCreery, and Y. Hiyoshi, “ T-phase spectra, seismic moments, and tsunamigenesis,” Bull. Seis. Soc. Am. 82, 12751305 (1992).
36. Y. Yang and D. W. Forsyth, “ Improving epicentral and magnitude estimation of earthquakes from t phases by considering the excitation function,” Bull. Seis. Soc. Am. 93, 21062122 (2003).
37. J. D. Milliman, Z. Jiezao, L. Anchun, and J. I. Ewing, “ Late Quaternary sedimentation on the Outer and Middle New Jersey Continental Shelf: Result of two local deglaciations?,” J. Geol. 98, 966976 (1990).
38. R. Butler, “ Observations of polarized seismoacoustic T waves at and beneath the seafloor in the abyssal Pacific ocean,” J. Acoust. Soc. Am. 120, 35993606 (2006).
39. R. A. Stephen, S. T. Bolmer, M. A. Dzieciuch, P. F. Worcester, R. K. Andrew, L. J. Buck, J. A. Mercer, J. A. Colosi, and B. M. Howe, “ Deep seafloor arrivals: An unexplained set of arrivals in long-range ocean acoustic propagation,” J. Acoust. Soc. Am. 126, 599606 (2009).
40. R. Butler and C. Lomnitz, “ Coupled seismoacoustic modes on the seafloor,” Geo. Res. Lett. 29, 14181422 (2002).

Data & Media loading...


Article metrics loading...



Oceanic T-waves are earthquake signals that originate when elastic waves interact with the fluid–elastic interface at the ocean bottom and are converted to acoustic waves in the ocean. These waves propagate long distances in the Sound Fixing and Ranging (SOFAR) channel and tend to be the largest observed arrivals from seismic events. Thus, an understanding of their generation is important for event detection, localization, and source-type discrimination. Recently benchmarked seismic self-starting fields are used to generate elastic parabolic equation solutions that demonstrate generation and propagation of oceanic T-waves in range-dependent underwater acoustic environments. Both downward sloping and abyssal ocean range-dependent environments are considered, and results demonstrate conversion of elastic waves into water-borne oceanic T-waves. Examples demonstrating long-range broadband T-wave propagation in range-dependent environments are shown. These results confirm that elastic parabolic equation solutions are valuable for characterization of the relationships between T-wave propagation and variations in range-dependent bathymetry or elastic material parameters, as well as for modeling T-wave receptions at hydrophone arrays or coastal receiving stations.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd