Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/asa/journal/jasa/137/6/10.1121/1.4921029
1.
1. E. A. Okal, “ The generation of T waves by earthquakes,” in Advances in Geophysics, edited by R. Dmowska ( Academic, San Diego, 2008), Vol. 49, pp. 165.
2.
2. J. Guilbert, J. Vergoz, E. Schisselé, A. Roueff, and Y. Cansi, “ Use of hydroacoustic and seismic arrays to observe rupture propagation and source extent of the mw = 9.0 Sumatra earthquake,” Geo. Res. Lett. 32, L15310 (2005).
http://dx.doi.org/10.1029/2005GL022966
3.
3. J. Talandier and E. A. Okal, “ Monochromatic T waves from underwater volcanoes in the Pacific Ocean: Ringing witnesses to geyser processes?,” Bull. Seis. Soc. Am. 86, 15291544 (1996).
4.
4. J. H. Haxel and R. P. Dziak, “ Evidence of explosive seafloor volcanic activity from the Walvis Ridge, South Atlantic Ocean,” Geo. Res. Lett. 32, L13609 (2005).
http://dx.doi.org/10.1029/2005GL023205
5.
5. D. Reymond, O. Hyvernaud, J. Talandier, and E. A. Okal, “ T-wave detection of two underwater explosions off Hawaii on 13 April 2000,” Bull. Seis. Soc. Am. 93, 804816 (2003).
http://dx.doi.org/10.1785/0120010296
6.
6. R. P. Dziak, D. R. Bohnenstiehl, H. Matsumoto, C. G. Fox, D. K. Smith, M. Tolstoy, T.-K. Lau, J. H. Haxel, and M. J. Fowler, “ P- and T-wave detection thresholds, Pn velocity estimate, and detection of lower mantle and core P-waves on ocean sound-channel hydrophones at the Mid-Atlantic Ridge,” Bull. Seis. Soc. Am. 94, 665677 (2004).
http://dx.doi.org/10.1785/0120030156
7.
7. J. Talandier and E. A. Okal, “ On the mechanism of conversion of seismic waves to and from T waves in the vicinity of island shores,” Bull. Seis. Soc. Am. 88, 621632 (1998).
8.
8. N. R. Chapman and R. Marrett, “ The directionality of acoustic T-phase signals from small magnitude submarine earthquakes,” J. Acoust. Soc. Am. 119, 36693675 (2006).
http://dx.doi.org/10.1121/1.2195073
9.
9. R. P. Dziak, “ Empirical relationship of T-wave energy and fault parameters of northeast Pacific Ocean earthquakes,” Geo. Res. Lett. 28, 25372540 (2001).
http://dx.doi.org/10.1029/2001GL012939
10.
10. E. A. Okal, “ T-phase stations for the international monitoring system of the comprehensive nuclear-test ban treaty: A global perspective,” Seis. Res. Lett. 72, 186196 (2001).
http://dx.doi.org/10.1785/gssrl.72.2.186
11.
11. E. A. Okal, P. Alsset, O. Hyvernaud, and F. Schindelé, “ The deficient T waves of tsunami earthquakes,” Geophys. J. Int. 152, 416432 (2003).
http://dx.doi.org/10.1046/j.1365-246X.2003.01853.x
12.
12. C. D. de Groot-Hedlin and J. A. Orcutt, “ Excitation of T-phases by seafloor scattering,” J. Acoust. Soc. Am. 109, 19441954 (2001).
http://dx.doi.org/10.1121/1.1361057
13.
13. P.-F. Piserchia, J. Virieux, D. Rodrigues, S. Gaffet, and J. Talandier, “ Hybrid numerical modelling of T-wave propagation: Application to the Midplate experiment,” Geophys. J. Int. 133, 789800 (1998).
http://dx.doi.org/10.1046/j.1365-246X.1998.00546.x
14.
14. J. L. Stephens, G. E. Baker, R. W. Cook, G. D'Spain, L. P. Berger, and S. M. Day, “ Empirical and numerical modeling of T-phase propagation from ocean to land,” Pure Appl. Geophys. 158, 531565 (2001).
http://dx.doi.org/10.1007/PL00001194
15.
15. Y. Cansi and N. Bethoux, “ T waves with long inland paths: Synthetic seismograms,” J. Geophys. Res. 90, 54595465, doi:10.1029/JB090iB07p05459 (1985).
http://dx.doi.org/10.1029/JB090iB07p05459
16.
16. Z. Upton, M. D. Collins, and J. Pulli, “ Hydroacoustic blockage prediction and measurement at Diego Garcia using the Adiabatic Mode Parabolic Equation Model,” J. Acoust. Soc. Am. 123, 3942 (2008).
http://dx.doi.org/10.1121/1.2936027
17.
17. S. D. Frank, R. I. Odom, and J. M. Collis, “ Elastic parabolic equation solutions for underwater acoustic problems using seismic sources,” J. Acoust. Soc. Am. 133, 13581367 (2013).
http://dx.doi.org/10.1121/1.4790355
18.
18. J. M. Collis, W. L. Siegmann, F. B. Jensen, M. Zampolli, E. T. Küsel, and M. D. Collins, “ Parabolic equation solution of seismo-acoustics problems involving variations in bathymetry and sediment thickness,” J. Acoust. Soc. Am. 123, 5155 (2008).
http://dx.doi.org/10.1121/1.2799932
19.
19. M. Park, R. I. Odom, and D. J. Soukup, “ Modal scattering: A key to understanding oceanic T-waves,” Geo. Res. Lett. 28, 34013404 (2001).
http://dx.doi.org/10.1029/2001GL013472
20.
20. W. Jerzak, W. L. Siegmann, and M. D. Collins, “ Modeling Rayleigh and Stoneley waves and other interface and boundary effects with the parabolic equation,” J. Acoust. Soc. Am. 117, 34973503 (2005).
http://dx.doi.org/10.1121/1.1893245
21.
21. H. Kolsky, Stress Waves in Solids ( Dover, New York, 1963), p. 8.
22.
22. M. D. Collins, “ Higher-order Padé approximations for accurate and stable elastic parabolic equations with application to interface wave propagation,” J. Acoust. Soc. Am. 89, 10501057 (1991).
http://dx.doi.org/10.1121/1.400646
23.
23. J. D. Schneiderwind, J. M. Collis, and H. J. Simpson, “ Elastic Pekeris waveguide normal mode solution comparisons against laboratory data,” J. Acoust. Soc. Am. 132, EL182EL188 (2012).
http://dx.doi.org/10.1121/1.4740227
24.
24. W. M. Ewing, W. S. Jardetzky, and F. Press, Elastic Waves in Layered Media ( McGraw-Hill, New York, 1957), p. 8.
25.
25. M. D. Collins, “ A higher-order parabolic equation for wave propagation in an ocean overlying an elastic bottom,” J. Acoust. Soc. Am. 86, 14591464 (1989).
http://dx.doi.org/10.1121/1.398706
26.
26. D. A. Outing, W. L. Siegmann, M. D. Collins, and E. K. Westwood, “ Generalization of the rotated parabolic equation to variable slopes,” J. Acoust. Soc. Am. 120, 35343538 (2006).
http://dx.doi.org/10.1121/1.2372590
27.
27. E. T. Küsel, W. L. Siegmann, and M. D. Collins, “ A single-scattering correction for large contrasts in elastic layers,” J. Acoust. Soc. Am. 121, 808813 (2007).
http://dx.doi.org/10.1121/1.2404627
28.
28. M. D. Collins, “ The rotated parabolic equation and sloping ocean bottoms,” J. Acoust. Soc. Am. 87, 10351037 (1990).
http://dx.doi.org/10.1121/1.398829
29.
29. M. D. Collins, J. P. Lingevitch, and W. L. Siegmann, “ Wave propagation in poro-acoustic media,” Wave Motion 25, 265272 (1997).
http://dx.doi.org/10.1016/S0165-2125(96)00045-5
30.
30. B. A. McCollom and J. M. Collis, “ Root finding in the complex plane for seismo-acoustic propagation scenarios with Green's function solutions,” J. Acoust. Soc. Am. 136, 10361045 (2014).
http://dx.doi.org/10.1121/1.4892789
31.
31. L. Tolstoy and W. M. Ewing, “ The T phase of shallow-focus earthquakes,” Bull. Seis. Soc. Am. 40, 2552 (1950).
32.
32. F. B. Jensen, W. A. Kuperman, M. B. Porter, and H. Schmidt, “ Computational Ocean Acoustics,” in Modern Acoustics and Signal Processing, 2nd ed., edited by R. T. Beyer ( Springer, New York, 2011), pp. 8688, 358.
33.
33. R. H. Johnson and R. A. Norris, “ T-phase radiators in the Western Aleutians,” Bull. Seis. Soc. Am. 58, 110 (1968).
34.
34. P. D. Slack, C. G. Fox, and R. P. Dziak, “ P wave detection thresholds, Pn velocity estimates, and T wave location uncertainty from oceanic hydrophones,” J. Geophys. Res. 104, 1306113072, doi:10.1029/1999JB900112 (1999).
http://dx.doi.org/10.1029/1999JB900112
35.
35. D. A. Walker, C. S. McCreery, and Y. Hiyoshi, “ T-phase spectra, seismic moments, and tsunamigenesis,” Bull. Seis. Soc. Am. 82, 12751305 (1992).
36.
36. Y. Yang and D. W. Forsyth, “ Improving epicentral and magnitude estimation of earthquakes from t phases by considering the excitation function,” Bull. Seis. Soc. Am. 93, 21062122 (2003).
http://dx.doi.org/10.1785/0120020215
37.
37. J. D. Milliman, Z. Jiezao, L. Anchun, and J. I. Ewing, “ Late Quaternary sedimentation on the Outer and Middle New Jersey Continental Shelf: Result of two local deglaciations?,” J. Geol. 98, 966976 (1990).
http://dx.doi.org/10.1086/629465
38.
38. R. Butler, “ Observations of polarized seismoacoustic T waves at and beneath the seafloor in the abyssal Pacific ocean,” J. Acoust. Soc. Am. 120, 35993606 (2006).
http://dx.doi.org/10.1121/1.2354066
39.
39. R. A. Stephen, S. T. Bolmer, M. A. Dzieciuch, P. F. Worcester, R. K. Andrew, L. J. Buck, J. A. Mercer, J. A. Colosi, and B. M. Howe, “ Deep seafloor arrivals: An unexplained set of arrivals in long-range ocean acoustic propagation,” J. Acoust. Soc. Am. 126, 599606 (2009).
http://dx.doi.org/10.1121/1.3158826
40.
40. R. Butler and C. Lomnitz, “ Coupled seismoacoustic modes on the seafloor,” Geo. Res. Lett. 29, 14181422 (2002).
http://dx.doi.org/10.1029/2002GL014722
http://aip.metastore.ingenta.com/content/asa/journal/jasa/137/6/10.1121/1.4921029
Loading
/content/asa/journal/jasa/137/6/10.1121/1.4921029
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/asa/journal/jasa/137/6/10.1121/1.4921029
2015-06-01
2016-12-07

Abstract

Oceanic T-waves are earthquake signals that originate when elastic waves interact with the fluid–elastic interface at the ocean bottom and are converted to acoustic waves in the ocean. These waves propagate long distances in the Sound Fixing and Ranging (SOFAR) channel and tend to be the largest observed arrivals from seismic events. Thus, an understanding of their generation is important for event detection, localization, and source-type discrimination. Recently benchmarked seismic self-starting fields are used to generate elastic parabolic equation solutions that demonstrate generation and propagation of oceanic T-waves in range-dependent underwater acoustic environments. Both downward sloping and abyssal ocean range-dependent environments are considered, and results demonstrate conversion of elastic waves into water-borne oceanic T-waves. Examples demonstrating long-range broadband T-wave propagation in range-dependent environments are shown. These results confirm that elastic parabolic equation solutions are valuable for characterization of the relationships between T-wave propagation and variations in range-dependent bathymetry or elastic material parameters, as well as for modeling T-wave receptions at hydrophone arrays or coastal receiving stations.

Loading

Full text loading...

/deliver/fulltext/asa/journal/jasa/137/6/1.4921029.html;jsessionid=NfoV5j_E2yIRf0c1kYdavVcZ.x-aip-live-03?itemId=/content/asa/journal/jasa/137/6/10.1121/1.4921029&mimeType=html&fmt=ahah&containerItemId=content/asa/journal/jasa
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=asadl.org/jasa/137/6/10.1121/1.4921029&pageURL=http://scitation.aip.org/content/asa/journal/jasa/137/6/10.1121/1.4921029'
Right1,Right2,Right3,