Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. Ayat, M. , Teal, P. D. , and McGuinness, M. (2014). “ An integrated electromechanical model for the cochlear microphonic,” Biocybern. Biomed. Eng. 34, 206219.
2. Bertaccini, D. , and Sisto, R. (2011). “ Fast numerical solution of nonlinear nonlocal cochlear models,” J. Comput. Phys. 230, 25752587.
3. Davis, T. A. (2004). “ A column pre-ordering strategy for the unsymmetric-pattern multifrontal method,” ACM Trans. Math. Software 30, 165195.
4. Davis, T. A. (2006). Direct Methods for Sparse Linear Systems ( Society for Industrial and Applied Mathematics, Philadelphia, PA), Chap. 8, pp. 135144).
5. Diependaal, R. J. , Duifhuis, H. , Hoogstraten, H. , and Viergever, M. A. (1987). “ Numerical methods for solving one-dimensional cochlear models in the time domain,” J. Acoust. Am. Soc. 82, 16551666.
6. Elliott, S. J. , Ku, E. M. , and Lineton, B. (2007). “ A state space model for cochlear mechanics,” J. Acoust. Am. Soc. 122, 27592771.
7. Gilbert, J. R. , Moler, C. , and Schreiber, R. (1992). “ Sparse matrices in MATLAB: Design and implementation,” SIAM J. Matrix Anal. Appl. 13, 333356.
8. Henderson, H. V. , and Searle, S. R. (1981). “ On deriving the inverse of a sum of matrices,” SIAM Rev. 23, 5360.
9. Kringlebotn, M. (1988). “ Network model for the human middle ear,” Scand. Audiol. 17, 7585.
10. Ku, E. M. (2008). “ Modelling the human cochlea,” Ph.D. thesis, University of Southampton, Southampton, UK.
11. Ku, E. M. , Elliott, S. J. , and Lineton, B. (2009). “ Limit cycle oscillations in a nonlinear state space model of the human cochlea,” J. Acoust. Am. Soc. 126, 739750.
12. Liu, Y.-W. , and Neely, S. T. (2010). “ Distortion product emissions from a cochlear model with nonlinear mechanoelectrical transduction in outer hair cells,” J. Acoust. Am. Soc. 127, 24202432.
14. Neely, S. T. , and Kim, D. (1986). “ A model for active elements in cochlear biomechanics,” J. Acoust. Soc. Am. 79, 14721480.
15. Rapson, M. J. , Tapson, J. C. , and Karpul, D. (2012). “ Unification and extension of monolithic state space and iterative cochlear models,” J. Acoust. Soc. Am. 131, 39353952.
16. Sisto, R. , Moleti, A. , Paternoster, N. , Botti, T. , and Bertaccini, D. (2010). “ Different models of the active cochlea, and how to implement them in the state-space formalism,” J. Acoust. Soc. Am. 128, 11911202.

Data & Media loading...


Article metrics loading...



Nonlinear models of the cochlea are best implemented in the time domain, but their computational demands usually limit the duration of the simulations that can reasonably be performed. This letter presents a modified state space method and its application to an example nonlinear one-dimensional transmission-line cochlear model. The sparsity pattern of the individual matrices for this alternative formulation allows the use of significantly faster numerical algorithms. Combined with a more efficient implementation of the saturating nonlinearity, the computational speed of this modified state space method is more than 40 times faster than that of the original formulation.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd