Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/asa/journal/jasa/137/6/10.1121/1.4921676
1.
1. M. Fink, W. A. Kuberman, J.-P. Montagner, and A. Tourin, Imaging of Complex Media with Acoustic and Seismic Waves ( Springer, Berlin, 2002).
2.
2. R. Gr. Maev, Acoustic Microscopy: Fundamentals and Applications ( Wiley-VCH, Weinheim, 2008).
3.
3. A. G. Evans, B. R. Tittmann, L. Ahlberg, B. T. Khuri-Yakub, and G. S. Kino, “ Ultrasonic attenuation in ceramics,” J. Appl. Phys. 49, 26692679 (1978).
http://dx.doi.org/10.1063/1.325185
4.
4. J. H. Page and R. D. McCulloch, “ Ultrasound propagation in sintered metal powder: Evidence for a crossover from phonons to fractons,” Phys. Rev. Lett. 57, 13241327 (1986).
http://dx.doi.org/10.1103/PhysRevLett.57.1324
5.
5. M.-F. Xu, H.-P. Baum, A. Schenstrom, B.-K. Sarma, M. Levy, K. J. Sun, L. E. Toth, S. A. Wolf, and D. U. Gubser, “ Ultrasonic-attenuation measurements in single-phased YBa2Cu3O7,” Phys. Rev. B 37, 36753677 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.3675
6.
6. N. K. Naik, R. Goel, and M. D. Kulkarni, “ Stress wave attenuation in ceramic plates,” J. Appl. Phys. 103, 103504 (2008).
http://dx.doi.org/10.1063/1.2921971
7.
7. R. L. Weaver, “ Diffusivity of ultrasound in polycrystals,” J. Mech. Phys. Solids 38, 5586 (1990).
http://dx.doi.org/10.1016/0022-5096(90)90021-U
8.
8. P. R. Morris, “ Averaging fourth-rank tensors with weight functions,” J. Appl. Phys. 40, 447448 (1969).
http://dx.doi.org/10.1063/1.1657417
9.
9. L. Yang, O. I. Lobkis, and S. I. Rokhlin, “ Explicit model for ultrasonic attenuation in equiaxed hexagonal polycrystalline materials,” Ultrasonics 51, 303309 (2011).
http://dx.doi.org/10.1016/j.ultras.2010.10.002
10.
10. L. Yang, J. Li, and S. I. Rokhlin, “ Ultrasonic scattering in polycrystals with orientation clusters of orthorhombic crystallites,” Wave Motion 50, 12831302 (2013).
http://dx.doi.org/10.1016/j.wavemoti.2013.06.003
11.
11. K. Brugger, “ Pure modes for elastic waves in crystals,” J. Appl. Phys. 36, 759768 (1965).
http://dx.doi.org/10.1063/1.1714215
12.
12. A. G. Every and A. K. McCurdy, “ Second and higher order elastic constants,” in Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology, edited by O. Madelung and D. F. Nelson ( Springer-Verlag, Berlin, 1992), Vol. 29a.
13.
13. S. Hirsekorn, “ The scattering of ultrasonic waves by multiphase polycrystals,” J. Acoust. Soc. Am. 83, 12311242 (1988).
http://dx.doi.org/10.1121/1.395978
14.
14. S. Ahmed and R. B. Thompson, “ Propagation of elastic waves in equiaxed stainless steel polycrystals with aligned [001] axes,” J. Acoust. Soc. Am. 99, 20862096 (1996).
http://dx.doi.org/10.1121/1.415395
15.
15. G. Ghoshal, J. A. Turner, and R. L. Weaver, “ Wigner distribution function of a transducer beam pattern within a multiple scattering formalism for heterogeneous solids,” J. Acoust. Soc. Am. 122, 20092021 (2007).
http://dx.doi.org/10.1121/1.2773989
16.
16. O. I. Lobkis and S. I. Rokhlin, “ Characterization of polycrystals with elongated duplex microstructure by inversion of ultrasonic backscattering data,” Appl. Phys. Lett. 96, 161905 (2010).
http://dx.doi.org/10.1063/1.3416910
17.
17. J. A. Turner and R. L. Weaver, “ Radiative transfer and multiple scattering of diffuse ultrasound in polycrystalline media,” J. Acoust. Soc. Am. 96, 36753683 (1994).
http://dx.doi.org/10.1121/1.410587
http://aip.metastore.ingenta.com/content/asa/journal/jasa/137/6/10.1121/1.4921676
Loading
/content/asa/journal/jasa/137/6/10.1121/1.4921676
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/asa/journal/jasa/137/6/10.1121/1.4921676
2015-05-29
2016-12-07

Abstract

This letter provides a theoretical extension to the elastic properties of polycrystals in order to describe elastic wave scattering from grain boundaries. The extension allows the longitudinal and shear attenuation coefficients for scattering to be derived and is valid for polycrystals containing crystallites of any symmetry class. Attenuation curves are given for polycrystalline SiO, ZrO, and SnF, which contain monoclinic crystallites. This work will allow ultrasonic techniques to be applied to new classes of materials containing nontrivial microstructures.

Loading

Full text loading...

/deliver/fulltext/asa/journal/jasa/137/6/1.4921676.html;jsessionid=WCr_sjtR4myIoqRBBkDvgAbi.x-aip-live-06?itemId=/content/asa/journal/jasa/137/6/10.1121/1.4921676&mimeType=html&fmt=ahah&containerItemId=content/asa/journal/jasa
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=asadl.org/jasa/137/6/10.1121/1.4921676&pageURL=http://scitation.aip.org/content/asa/journal/jasa/137/6/10.1121/1.4921676'
Right1,Right2,Right3,