Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/asa/journal/jasa/137/6/10.1121/1.4921681
1.
1. E. Mach, “ Über den Verlauf von Funkenwellen in der Ebene und im Raume” (“Over the course of radio waves in the plane and in space”), Sitzungsbr. Akad. Wiss. Wien 78, 819838 (1878).
2.
2. G. Ben-Dor, Shock Wave Reflection Phenomena ( Springer Verlag, New York, 1992), pp. 313.
3.
3. J. Von Neumann, “ Oblique reflection of shocks,” in John von Neumann Collected Work, edited by A. H. Taub ( MacMillan, New York, 1963), Vol. 6, pp. 238299.
4.
4. P. Colella and L. F. Henderson, “ The von Neumann paradox for the diffraction of weak shock waves,” J. Fluid Mech. 213, 7194 (1990).
http://dx.doi.org/10.1017/S0022112090002221
5.
5. B. Skews and J. Ashworth, “ The physical nature of weak shock wave reflection,” J. Fluid Mech. 542, 105114 (2005).
http://dx.doi.org/10.1017/S0022112005006543
6.
6. M. Brio and J. K. Hunter, “ Mach reflection for the two-dimensional Burgers equation,” Physica D 60, 194207 (1992).
http://dx.doi.org/10.1016/0167-2789(92)90236-G
7.
7. E. I. Vasiliev and A. N. Kraiko, “ Numerical simulation of weak shock diffraction over a wedge under the von Neumann paradox conditions,” Comput. Math. Phys. 39, 13351345 (1999)
7. E. I. Vasiliev and A. N. Kraiko [Zh. Vychisl. Mat. Mat. Fiz. 39(8), 13931404 (1999)].
8.
8. A. R. Zakharian, M. Brio, J. K. Hunter, and G. M. Webb, “ The von Neumann paradox in weak shock reflection,” J. Fluid Mech. 422, 193205 (2000).
http://dx.doi.org/10.1017/S0022112000001609
9.
9. E. G. Tabak and R. R. Rosales, “ Focusing of weak shocks waves and the von Neumann paradox of oblique shock reflection,” Phys. Fluids 6, 18741892 (1994).
http://dx.doi.org/10.1063/1.868246
10.
10. S. Baskar, F. Coulouvrat, and R. Marchiano, “ Nonlinear reflection of grazing acoustic shock waves: Unsteady transition from von Neumann to Mach to Snell-Descartes reflections,” J. Fluid Mech. 575, 2755 (2007).
http://dx.doi.org/10.1017/S0022112006003752
11.
11. R. Marchiano, S. Baskar, F. Coulouvrat, and J.-L. Thomas, “ Experimental evidence of deviation from mirror reflection for acoustical shock waves,” Phys. Rev. E 76, 056602 (2007).
http://dx.doi.org/10.1103/PhysRevE.76.056602
12.
12. V. W. Sparrow and R. Raspet, “ A numerical method for general finite amplitude wave propagation in two dimensions and its application to spark pulses,” J. Acoust. Soc. Am. 90(5), 26832691 (1991).
http://dx.doi.org/10.1121/1.401863
13.
13. B. Sturtevant and V. A. Kulkarny, “ The focusing of weak shock waves,” J. Fluid. Mech. 73, 651671 (1976).
http://dx.doi.org/10.1017/S0022112076001559
14.
14. V. A. Khokhlova, R. Souchon, J. Tavakkoli, O. A. Sapozhnikov, and D. Cathignol, “ Numerical modeling of finite amplitude sound beams: Shock formation in the near field of a cw plane piston source,” J. Acoust. Soc. Am. 110(1), 95108 (2001).
http://dx.doi.org/10.1121/1.1369097
15.
15. P. Yuldashev, S. Ollivier, M. Averiyanov, O. Sapozhnikov, V. Khokhlova, and P. Blanc-Benon, “ Nonlinear propagation of spark-generated N-waves in air: Modeling and measurements using acoustical and optical methods,” J. Acoust. Soc. Am. 128(6), 33213333 (2010).
http://dx.doi.org/10.1121/1.3505106
16.
16. G. S. Settles, Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media ( Springer-Verlag, Heidelberg, 2001), pp. 27, 39–52, 338340.
17.
17. E. A. Zabolotskaya and R. V. Khokhlov, “ Quasi-plane waves in the nonlinear acoustics of confined beams,” Sov. Phys. Acoust. 15, 3540 (1969).
18.
18. O. V. Bessonova, V. A. Khokhlova, M. R. Bailey, M. S. Canney, and L. A. Crum, “ Focusing of high power ultrasound beams and limiting values of shock wave parameters,” Acoust. Phys. 55, 463476 (2009).
http://dx.doi.org/10.1134/S1063771009040034
19.
19. M. M. Karzova, M. V. Averianov, O. A. Sapozhnikov, and V. A. Khokhlova, “ Mechanisms for saturation of nonlinear pulsed and periodic signals in focused acoustic beams,” Acoust. Phys. 58(1), 8189 (2012).
http://dx.doi.org/10.1134/S1063771011060078
20.
20. M. R. Bailey, V. A. Khokhlova, O. A. Sapozhnikov, S. G. Kargl, and L. A. Crum, “ Physical mechanisms of the therapeutic effect of ultrasound,” Acoust. Phys. 49(4), 369388 (2003).
http://dx.doi.org/10.1134/1.1591291
http://aip.metastore.ingenta.com/content/asa/journal/jasa/137/6/10.1121/1.4921681
Loading
/content/asa/journal/jasa/137/6/10.1121/1.4921681
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/asa/journal/jasa/137/6/10.1121/1.4921681
2015-05-28
2016-09-25

Abstract

The aim of this study is to show the evidence of Mach stem formation for very weak shock waves with acoustic Mach numbers on the order of 10−3 to 10−2. Two representative cases are considered: reflection of shock pulses from a rigid surface and focusing of nonlinear acoustic beams. Reflection experiments are performed in air using spark-generated shock pulses. Shock fronts are visualized using a schlieren system. Both regular and irregular types of reflection are observed. Numerical simulations are performed to demonstrate the Mach stem formation in the focal region of periodic and pulsed nonlinear beams in water.

Loading

Full text loading...

/deliver/fulltext/asa/journal/jasa/137/6/1.4921681.html;jsessionid=WuCe7XsJwT5jWqc5R-FRLeHf.x-aip-live-02?itemId=/content/asa/journal/jasa/137/6/10.1121/1.4921681&mimeType=html&fmt=ahah&containerItemId=content/asa/journal/jasa
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=asadl.org/jasa/137/6/10.1121/1.4921681&pageURL=http://scitation.aip.org/content/asa/journal/jasa/137/6/10.1121/1.4921681'
Right1,Right2,Right3,