Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/asa/journal/jasa/138/1/10.1121/1.4922364
1.
1. D. D. Mehta, M. Zañartu, S. W. Feng, H. A. Cheyne II, and R. E. Hillman, “ Mobile voice health monitoring using a wearable accelerometer sensor and a smartphone platform,” IEEE Trans. Biomed. Eng. 59(11), 30903096 (2012).
http://dx.doi.org/10.1109/TBME.2012.2207896
2.
2. M. Ghassemi, J. H. Van Stan, D. D. Mehta, M. Zañartu, H. A. Cheyne II, R. E. Hillman, and J. V. Guttag, “ Learning to detect vocal hyperfunction from ambulatory neck-surface accelerometer features: Initials results for vocal fold nodules,” IEEE Trans. Biomed. Eng. 61(6), 16681675 (2014).
http://dx.doi.org/10.1109/TBME.2013.2297372
3.
3. J. H. Van Stan, J. Gustafsson, E. Schalling, and R. E. Hillman, “ Direct comparison of commercially available ambulatory voice monitors: A clinical perspective,” Perspect. Voice Voice Disorders 24(2), 8086 (2014).
http://dx.doi.org/10.1044/vvd24.2.80
4.
4. M. Zañartu, J. C. Ho, D. D. Mehta, R. E. Hillman, and G. R. Wodicka, “ Subglottal impedance-based inverse filtering of speech sounds using neck surface acceleration,” IEEE Trans. Audio Speech Lang. Process. 21(9), 19291939 (2013).
http://dx.doi.org/10.1109/TASL.2013.2263138
5.
5. R. E. Hillman, E. B. Holmberg, J. S. Perkell, M. Walsh, and C. Vaughan, “ Objective assessment of vocal hyperfunction: An experimental framework and initial results,” J. Speech Hear. Res. 32(2), 373392 (1989).
http://dx.doi.org/10.1044/jshr.3202.373
6.
6. J. H. Van Stan, D. D. Mehta, and R. E. Hillman, “ The effect of voice ambulatory biofeedback on the daily performance and retention of a modified vocal motor behavior in participants with normal voices,” J. Speech Lang. Hear. Res., in press (2015).
http://dx.doi.org/10.1044/2015_JSLHR-S-14-0159
7.
7. A. Tsanas, M. Zañartu, M. Little, C. Fox, L. Ramig, and G. Clifford, “ Robust fundamental frequency estimation in sustained vowels: Detailed algorithmic comparisons and information fusion with adaptive Kalman filtering,” J. Acoust. Soc. Am. 135(5), 28852901 (2014).
http://dx.doi.org/10.1121/1.4870484
8.
8. V. Espinoza and M. Zañartu, “ Estudio dináamico de paráametros de filtrado inverso para el seguimiento ambulatorio de la función vocal” (“Dynamic study of inverse filtering parameters for ambulatory monitoring of vocal function”), in IX Congreso Iberoamericano de Acústica, FIA2014, Valdivia, Chile, December 2014.
9.
9. J. S. Perkell, R. E. Hillman, and E. B. Holmberg, “ Group differences in measures of voice production and revised values of maximum airflow declination rate,” J. Acoust. Soc. Am. 96(2), 695698 (1994).
http://dx.doi.org/10.1121/1.410307
10.
10. S. S. Kraman, G. A. Pressler, H. Pasterkamp, and G. R. Wodicka, “ Design, construction, and evaluation of a bioacoustic transducer testing (BATT) system for respiratory sounds,” IEEE Trans. Biomed. Eng. 53(8), 17111715 (2006).
http://dx.doi.org/10.1109/TBME.2006.873696
http://aip.metastore.ingenta.com/content/asa/journal/jasa/138/1/10.1121/1.4922364
Loading
/content/asa/journal/jasa/138/1/10.1121/1.4922364
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/asa/journal/jasa/138/1/10.1121/1.4922364
2015-07-08
2016-12-03

Abstract

The development of ambulatory voice monitoring devices has the potential to improve the diagnosis and treatment of voice disorders. In this proof-of-concept study, real-time biofeedback is incorporated into a smartphone-based platform that records and processes neck surface acceleration. The focus is on utilizing aerodynamic measures of vocal function as a basis for biofeedback. This is done using regressed Z-scores to compare recorded values to normative estimates based on sound pressure level and fundamental frequency. Initial results from the analysis of different voice qualities suggest that accelerometer-based estimates of aerodynamic parameters can be used for real-time ambulatory biofeedback.

Loading

Full text loading...

/deliver/fulltext/asa/journal/jasa/138/1/1.4922364.html;jsessionid=rD_iPgRVRH4CbcrYVn9kzoYj.x-aip-live-06?itemId=/content/asa/journal/jasa/138/1/10.1121/1.4922364&mimeType=html&fmt=ahah&containerItemId=content/asa/journal/jasa
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=asadl.org/jasa/138/1/10.1121/1.4922364&pageURL=http://scitation.aip.org/content/asa/journal/jasa/138/1/10.1121/1.4922364'
Right1,Right2,Right3,