Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/asa/journal/jasa/138/1/10.1121/1.4922623
1.
1. M. Fink, D. Cassereau, A. Derode, C. Prada, P. Roux, M. Tanter, J.-L. Thomas, and F. Wu, “ Time-reversed acoustics,” Rep. Prog. Phys. 63(12), 19331995 (2000).
http://dx.doi.org/10.1088/0034-4885/63/12/202
2.
2. C. Draeger and M. Fink, “ One-channel time reversal of elastic waves in a chaotic 2D-silicon cavity,” Phys. Rev. Lett. 79(3), 407410 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.407
3.
3. W. A. Kuperman, W. S. Hodgkiss, H. C. Song, T. Akal, C. Ferla, and D. R. Jackson, “ Phase conjugation in the ocean: Experimental demonstration of an acoustic time-reversal mirror,” J. Acoust. Soc. Am. 103(1), 2540 (1998).
http://dx.doi.org/10.1121/1.423233
4.
4. C. Larmat, J.-P. Montagner, M. Fink, Y. Capdeville, A. Tourin, and E. Clévédé, “ Time-reversal imaging of seismic sources and application to the great Sumatra earthquake,” Geophys. Res. Lett. 33(L19312), 14, doi:10.1029/2006GL026336 (2006).
http://dx.doi.org/10.1029/2006GL026336
5.
5. J.-L. Robert and M. Fink, “ Green's function estimation in speckle using the decomposition of the time reversal operator: Application to aberration correction in medical imaging,” J. Acoust. Soc. Am. 123, 866877 (2008).
http://dx.doi.org/10.1121/1.2816562
6.
6. C. Prada, S. Manneville, D. Spoliansky, and M. Fink, “ Decomposition of the time reversal operator: Detection and selective focusing on two scatterers,” J. Acoust. Soc. Am. 99(4), 20672076 (1996).
http://dx.doi.org/10.1121/1.415393
7.
7. U. Polimeno and M. Meo, “ Detecting barely visible impact damage detection on aircraft composites structures,” Compos. Struct. 91(4), 398402 (2009).
http://dx.doi.org/10.1016/j.compstruct.2009.04.014
8.
8. H. Sohn, H. W. Park, K. H. Law, and C. R. Farrar, “ Damage detection in composite plates by using an enhanced time reversal method,” J. Aerosp. Eng. 20(3), 141151 (2007).
http://dx.doi.org/10.1061/(ASCE)0893-1321(2007)20:3(141)
9.
9. T. J. Ulrich, P. A. Johnson, and R. A. Guyer, “ Interaction dynamics of elastic waves with a complex nonlinear scatterer through the use of a time reversal mirror,” Phys. Rev. Lett. 98, 104301 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.104301
10.
10. T. J. Ulrich, K. Van Den Abeele, P.-Y. Le Bas, M. Griffa, B. E. Anderson, and R. A. Guyer, “ Three component time reversal: Focusing vector components using a scalar source,” J. Appl. Phys. 106(11), 113504 (2009).
http://dx.doi.org/10.1063/1.3259371
11.
11. A. Derode, A. Tourin, and M. Fink, “ Limits of time-reversal focusing through multiple scattering: Long-range correlation,” J. Acoust. Soc. Am. 107(6), 29872998 (2000).
http://dx.doi.org/10.1121/1.429328
12.
12. H. W. Park, S. B. Kim, and H. Sohn, “ Understanding a time reversal process in Lamb wave propagation,” Wave Motion 46, 451467 (2009).
http://dx.doi.org/10.1016/j.wavemoti.2009.04.004
13.
13. A. M. Sutin, J. A. TenCate, and P. A. Johnson, “ Single-channel time reversal in elastic solids,” J. Acoust. Soc. Am. 116(5), 27792784 (2004).
http://dx.doi.org/10.1121/1.1802676
http://aip.metastore.ingenta.com/content/asa/journal/jasa/138/1/10.1121/1.4922623
Loading
/content/asa/journal/jasa/138/1/10.1121/1.4922623
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/asa/journal/jasa/138/1/10.1121/1.4922623
2015-07-10
2016-12-09

Abstract

In this letter, fundamentals of transferring a time reversal experiment between similar objects are discussed. The time reversal experiment consists of two steps: forward propagation, when a source excites the medium and a complex wave field is created, and back propagation, resulting in time reversal focusing. Here the procedure of performing the first step on one specimen and the second step on another is investigated. The theory of time reversal transfer is explained on an example of object shape variations. However, conclusions of the theoretical analysis are applicable universally. The feasibility of the proposed procedure is validated in experiments modeling conditions in practice.

Loading

Full text loading...

/deliver/fulltext/asa/journal/jasa/138/1/1.4922623.html;jsessionid=JK8tuHXPDTxch9_ZwvCdvIXJ.x-aip-live-06?itemId=/content/asa/journal/jasa/138/1/10.1121/1.4922623&mimeType=html&fmt=ahah&containerItemId=content/asa/journal/jasa
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=asadl.org/jasa/138/1/10.1121/1.4922623&pageURL=http://scitation.aip.org/content/asa/journal/jasa/138/1/10.1121/1.4922623'
Right1,Right2,Right3,