Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/asa/journal/jasa/138/1/10.1121/1.4922764
1.
1. P. Laugier, “ Instrumentation for in vivo ultrasonic characterization of bone strength,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55, 11791196 (2008).
http://dx.doi.org/10.1109/TUFFC.2008.782
2.
2. C. F. Njeh, Quantitative Ultrasound: Assessment of Osteoporosis and Bone Status ( Taylor & Francis, London, 1999).
3.
3. S. Han, J. Medige, J. Davis, Z. Fishkin, W. Mihalko, and I. Ziv, “ Ultrasound velocity and broadband attenuation as predictors of load bearing capacities of human calcanei,” Calcif. Tissue Int. 60, 2125 (1997).
http://dx.doi.org/10.1007/s002239900180
4.
4. C. F. Njeh, C. W. Kuo, C. M. Langton, H. I. Atrah, and C. M. Boivin, “ Prediction of human femoral bone strength using ultrasound velocity and BMD: An in vitro study,” Osteoporosis Int. 7, 471477 (1997).
http://dx.doi.org/10.1007/s001980050035
5.
5. I. Mano, K. Horii, S. Takai, T. Suzaki, H. Nagaoka, and T. Otani, “ Development of novel ultrasonic bone densitometry using acoustic parameters of cancellous bone for fast and slow waves,” Jpn. J. Appl. Phys. 45, 47004702 (2006).
http://dx.doi.org/10.1143/JJAP.45.4700
6.
6. L. Cardoso, F. Teboul, L. Sedel, C. Oddou, and A. Meunier, “ In vitro acoustic waves propagation in human and bovine cancellous bone,” J. Bone Miner. Res. 18, 18031812 (2003).
http://dx.doi.org/10.1359/jbmr.2003.18.10.1803
7.
7. Z. E. A. Fellah, J. Y. Chapelon, S. Berger, W. Lauriks, and C. Depollier, “ Ultrasonic wave propagation in human cancellous bone: Application of Biot theory,” J. Acoust. Soc. Am. 116, 6173 (2004).
http://dx.doi.org/10.1121/1.1755239
8.
8. A. Hosokawa and T. Otani, “ Ultrasonic wave propagation in bovine cancellous bone,” J. Acoust. Soc. Am. 101, 558562 (1997).
http://dx.doi.org/10.1121/1.418118
9.
9. T. Otani, “ Quantitative estimation of bone density and bone quality using acoustic parameters of cancellous bone for fast and slow waves,” Jpn. J. Appl. Phys. 44, 45784582 (2005).
http://dx.doi.org/10.1143/JJAP.44.4578
10.
10. T. Otani, I. Mano, T. Tsujimoto, T. Yamamoto, R. Teshima, and H. Naka, “ Estimation of in vivo cancellous bone elasticity,” Jpn. J. Appl. Phys. 48, 07GK05 (2009).
http://dx.doi.org/10.1143/JJAP.48.07GK05
11.
11. Z. E. A. Fellah, N. Sebaa, M. Fellah, F. G. Mitri, E. Ogam, W. Lauriks, and C. Depollier, “ Application of the Biot model to ultrasound in bone: Direct problem,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 55, 15081515 (2008).
http://dx.doi.org/10.1109/TUFFC.2008.826
12.
12. C. M. Langton, C. F. Njeh, R. Hodgskinson, and J. D. Currey, “ Prediction of mechanical properties of the human calcaneus by broadband ultrasonic attenuation,” Bone 18, 495503 (1996).
http://dx.doi.org/10.1016/8756-3282(96)00086-5
13.
13. K. A. Wear, “ Ultrasonic scattering from cancellous bone: A review,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55, 14321441 (2008).
http://dx.doi.org/10.1109/TUFFC.2008.818
14.
14. G. Haiat, F. Padilla, F. Peyrin, and P. Laugier, “ Fast wave ultrasonic propagation in trabecular bone: Numerical study of the influence of porosity and structural anisotropy,” J. Acoust. Soc. Am. 123, 16941705 (2008).
http://dx.doi.org/10.1121/1.2832611
15.
15. A. Hosokawa, “ Development of a numerical cancellous bone model for finite-difference time-domain simulations of ultrasound propagation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 55, 12191233 (2008).
http://dx.doi.org/10.1109/TUFFC.2008.785
16.
16. Y. Nagatani, K. Mizuno, T. Saeki, M. Matsukawa, T. Sakaguchi, and H. Hosoi, “ Propagation of fast and slow waves in cancellous bone: Comparative study of simulation and experiment,” Acoust. Sci. Technol. 30, 257264 (2009).
http://dx.doi.org/10.1250/ast.30.257
17.
17. P. H. F. Nicholson and M. L. Bouxsein, “ Bone marrow influences quantitative ultrasound measurements in human cancellous bone,” Ultrasound Med. Biol. 28, 369375 (2002a).
http://dx.doi.org/10.1016/S0301-5629(01)00508-7
18.
18. P. H. F. Nicholson and M. L. Bouxsein, “ Effect of temperature on ultrasonic properties of the calcaneus in situ,” Osteo. Int. 13, 888892 (2002b).
http://dx.doi.org/10.1007/s001980200122
19.
19. M. Kaczmarek, J. Kubik, and M. Pakula, “ Short ultrasonic waves in cancellous bone,” Ultrasonics 40, 95100 (2002).
http://dx.doi.org/10.1016/S0041-624X(02)00097-5
20.
20. M. Pakula and J. Kubik, “ Propagation of ultrasonic waves in cancellous bone. Micro and macrocontinual approach,” in Poromechanics II, edited by J. L. Auriault, C. Geindreau, P. Royer, J. F. Bloch, C. Boutin, and L. Lewandowska ( Taylor & Francis, Florida, 2002), pp. 6570.
21.
21. M. Pakula, F. Padilla, and P. Laugier, “ Influence of the filling fluid on frequency-dependent velocity and attenuation in cancellous bones between 0.35 and 2.5 MHz,” J. Acoust. Soc. Am. 126, 33013310 (2009).
http://dx.doi.org/10.1121/1.3257233
22.
22. G. Haïat, A. Lhémery, F. Padilla, P. Laugier, and S. Naili, “ Modeling of ‘anomalous’ velocity dispersion in trabecular bone: Effect of multiple scattering and of viscous absorption,” J. Acoust. Soc. Am. 123, 3512 (2008).
http://dx.doi.org/10.1121/1.2934416
23.
23. G. Haïat and S. Naili, “ Independent scattering model and velocity dispersion intrabecular bone: Comparison with a multiple scattering model,” Biomech. Model Mechanobiol. 10, 95108 (2011).
http://dx.doi.org/10.1007/s10237-010-0220-z
24.
24. A. Alavi, J. P. Bond, D. E. Kuhi, and R. H. Creech, “ Scan detection of bone marrow infarcts in sickle cell disorders,” J. Nucl. Med. 15, 10031007 (1974).
25.
25. E. Morrie and M. D. Kricun, “ Red-yellow marrow conversion: Its effect on the location of some solitary bone lesions,” Skeletal. Radiol. 14, 1019 (1985).
http://dx.doi.org/10.1007/BF00361188
26.
26. J. B. Vogler III and W. A. Murphy, “ Bone marrow imaging,” Radiology 168, 679693 (1988).
http://dx.doi.org/10.1148/radiology.168.3.3043546
27.
27. T. Kubo, K. Fujimori, N. Cazier, T. Saeki, and M. Matsukawa, “ Properties of ultrasonic waves in bovine bone marrow,” Ultrasound Med. Biol. 37, 19231929 (2011).
http://dx.doi.org/10.1016/j.ultrasmedbio.2011.08.005
28.
28. A. A. El-Sariti, J. A. Evans, and J. G. Truscott, “ The temperature dependence of the speed of sound in bovine bone marrow at 750 kHz,” Ultrasound Med. Biol. 32, 985989 (2006).
http://dx.doi.org/10.1016/j.ultrasmedbio.2006.02.1412
29.
29. S. A. Goss, R. L. Johnston, and F. Dunn, “ Comprehensive compilation of empirical ultrasonic properties of mammalian tissues,” J. Acoust. Soc. Am. 64, 423457 (1978).
http://dx.doi.org/10.1121/1.382016
30.
30. Y. Nakamura and T. Otani, “ Study of surface elastic wave induced on backing material and diffracted field of a piezoelectric polymer film hydrophone,” J. Acoust. Soc. Am. 94, 11911199 (1993).
http://dx.doi.org/10.1121/1.408202
31.
31. R. C. Chivers and C. R. Hill, “ Ultrasonic attenuation in human tissue,” Ultrasound Med. Biol. 2, 2529 (1975).
http://dx.doi.org/10.1016/0301-5629(75)90038-1
32.
32. P. M. Gammell, D. H. Le Croissette, and R. C. Heyser, “ Temperature and frequency dependence of ultrasonic attenuation in selected tissues,” Ultrasound Med. Biol. 5, 269277 (1979).
http://dx.doi.org/10.1016/0301-5629(79)90018-8
33.
33. K. I. Lee, “ Ultrasonic properties in marrow-filled and water-filled bovine femoral trabecular bones invitro,” J. Acoust. Soc. Am. 132, EL296EL302 (2012).
http://dx.doi.org/10.1121/1.4751989
http://aip.metastore.ingenta.com/content/asa/journal/jasa/138/1/10.1121/1.4922764
Loading
/content/asa/journal/jasa/138/1/10.1121/1.4922764
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/asa/journal/jasa/138/1/10.1121/1.4922764
2015-07-16
2016-09-28

Abstract

Ultrasonic wave properties of human bone marrow obtained in the femur and tibia were measured using an ultrasound pulse technique. The measured frequency range was 4–10 MHz, and the temperature range was 30 °C–40 °C. The sound velocity was 1410 m/s, and the attenuation coefficient was 4.4 dB/cm at 36 °C (10 MHz). These values decreased with temperature. Site dependence and individual differences in elderly human bone marrow were negligible. The slopes of the attenuation coefficient were estimated by a power law. The values of the exponent were 2.0 (30 °C–38 °C) and 2.3 (40 °C).

Loading

Full text loading...

/deliver/fulltext/asa/journal/jasa/138/1/1.4922764.html;jsessionid=5k5VwDxUH1p7cZeqJrf5mXAk.x-aip-live-06?itemId=/content/asa/journal/jasa/138/1/10.1121/1.4922764&mimeType=html&fmt=ahah&containerItemId=content/asa/journal/jasa
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=asadl.org/jasa/138/1/10.1121/1.4922764&pageURL=http://scitation.aip.org/content/asa/journal/jasa/138/1/10.1121/1.4922764'
Right1,Right2,Right3,