Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/asa/journal/jasa/138/1/10.1121/1.4923014
1.
1. Brughera, A. , Dunai, L. , and Hartmann, W. M. (2013). “ Human interaural time difference thresholds for sine tones: The high-frequency limit,” J. Acoust. Soc. Am. 133, 28392855.
http://dx.doi.org/10.1121/1.4795778
2.
2. Culling, J. F. , Colburn, H. S. , and Spurchise, M. (2001). “ Interaural correlation sensitivity,” J. Acoust. Soc. Am. 110, 10201029.
http://dx.doi.org/10.1121/1.1383296
3.
3. Durlach, N. I. , Gabriel, K. J. , Colburn, H. S. , and Trahiotis, C. (1986). “ Interaural correlation discrimination: II. Relation to binaural unmasking,” J. Acoust. Soc. Am. 79, 15481557.
http://dx.doi.org/10.1121/1.393681
4.
4. Edmonds, B. A. , and Culling, J. F. (2009). “ Interaural correlation and the binaural summation of loudness,” J. Acoust. Soc. Am. 125, 38653870.
http://dx.doi.org/10.1121/1.3120412
5.
5. Gabriel, K. J. , and Colburn, H. S. (1981). “ Interaural correlation discrimination: I. Bandwidth and level dependence,” J. Acoust. Soc. Am. 69, 13941401.
http://dx.doi.org/10.1121/1.385821
6.
6. Goupell, M. J. (2010). “ Interaural fluctuations and the detection of interaural incoherence. IV. The effect of compression on stimulus statistics,” J. Acoust. Soc. Am. 128, 36913702.
http://dx.doi.org/10.1121/1.3505104
7.
7. Goupell, M. J. (2012). “ The role of envelope statistics in detecting changes in interaural correlation,” J. Acoust. Soc. Am. 132, 15611572.
http://dx.doi.org/10.1121/1.4740498
8.
8. Goupell, M. J. , and Hartmann, W. M. (2006). “ Interaural fluctuations and the detection of interaural incoherence: Bandwidth effects,” J. Acoust. Soc. Am. 119, 39713986.
http://dx.doi.org/10.1121/1.2200147
9.
9. Goupell, M. J. , and Hartmann, W. M. (2007). “ Interaural fluctuations and the detection of interaural incoherence. III. Narrowband experiments and binaural models,” J. Acoust. Soc. Am. 122, 10291045.
http://dx.doi.org/10.1121/1.2734489
10.
10. Goupell, M. J. , and Litovsky, R. Y. (2014). “ The effect of interaural fluctuation rate on correlation change discrimination,” J. Assoc. Res. Otolaryngol. 15, 115129.
http://dx.doi.org/10.1007/s10162-013-0426-8
11.
11. Koehnke, J. , Colburn, H. S. , and Durlach, N. I. (1986). “ Performance in several binaural-interaction experiments,” J. Acoust. Soc. Am. 79, 15581562.
http://dx.doi.org/10.1121/1.393682
12.
12. Lavandier, M. , and Culling, J. F. (2010). “ Prediction of binaural speech intelligibility against noise in rooms,” J. Acoust. Soc. Am. 127, 387399.
http://dx.doi.org/10.1121/1.3268612
13.
13. Levitt, H. (1971). “ Transformed up-down methods in psychoacoustics,” J. Acoust. Soc. Am. 49, 467477.
http://dx.doi.org/10.1121/1.1912375
14.
14. Mao, J. , and Carney, L. H. (2014). “ Binaural detection with narrowband and wideband reproducible noise maskers. IV. Models using interaural time, level, and envelope differences,” J. Acoust. Soc. Am. 135, 824837.
http://dx.doi.org/10.1121/1.4861848
15.
15. McFadden, D. , Jeffress, L. A. , and Russell, W. E. (1973). “ Individual differences in sensitivity to interaural differences in time and level,” Perceptual Motor Skills 37, 755761.
http://dx.doi.org/10.2466/pms.1973.37.3.755
16.
16. Ortiz, J. A. , and Wright, B. A. (2009). “ Contributions of procedure and stimulus learning to early, rapid perceptual improvements,” J. Exp. Psychol. Hum. Percept. Perform. 35, 188194.
http://dx.doi.org/10.1037/a0013161
17.
17. Ortiz, J. A. , and Wright, B. A. (2010). “ Differential rates of consolidation of conceptual and stimulus learning following training on an auditory skill,” Exp. Brain Res. 201, 441451.
http://dx.doi.org/10.1007/s00221-009-2053-5
18.
18. Trahiotis, C. , Bernstein, L. R. , Buell, T. N. , and Spektor, Z. (1990). “ On the use of adaptive procedures in binaural experiments,” J. Acoust. Soc. Am. 87, 13591361.
http://dx.doi.org/10.1121/1.399513
19.
19. van der Heijden, M. , and Joris, P. X. (2010). “ Interaural correlation fails to account for detection in a classic binaural task: Dynamic ITDs dominate N0Sπ detection,” J. Assoc. Res. Otolaryngol. 11, 113131.
http://dx.doi.org/10.1007/s10162-009-0185-8
20.
20. Whitmer, W. M. , Seeber, B. U. , and Akeroyd, M. A. (2012). “ Apparent auditory source width insensitivity in older hearing-impaired individuals,” J. Acoust. Soc. Am. 132, 369379.
http://dx.doi.org/10.1121/1.4728200
21.
21. Wright, B. A. , and Fitzgerald, M. B. (2001). “ Different patterns of human discrimination learning for two interaural cues to sound-source location,” Proc. Natl. Acad. Sci. U.S.A. 98, 1230712312.
http://dx.doi.org/10.1073/pnas.211220498
22.
22. Wright, B. A. , and Zhang, Y. (2009). “ A review of the generalization of auditory learning,” Philos. Trans R. Soc. London Ser. B 364, 301311.
http://dx.doi.org/10.1098/rstb.2008.0262
23.
23. Zhang, Y. , and Wright, B. A. (2007). “ Similar patterns of learning and performance variability for human discrimination of interaural time differences at high and low frequencies,” J. Acoust. Soc. Am. 121, 22072216.
http://dx.doi.org/10.1121/1.2434758
24.
24. Zhang, Y. , and Wright, B. A. (2009). “ An influence of amplitude modulation on interaural level difference processing suggested by learning patterns of human adults,” J. Acoust. Soc. Am. 126, 13491358.
http://dx.doi.org/10.1121/1.3177267
http://aip.metastore.ingenta.com/content/asa/journal/jasa/138/1/10.1121/1.4923014
Loading
/content/asa/journal/jasa/138/1/10.1121/1.4923014
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/asa/journal/jasa/138/1/10.1121/1.4923014
2015-07-23
2016-10-01

Abstract

Interaural correlation change detection was measured in untrained normal-hearing listeners. Narrowband (10-Hz) noises were varied by center frequency (CF; 500 or 4000 Hz) and diotic level roving (absent or present). For the 500-Hz CF, 96% of listeners could achieve threshold (79.4% correct at the easiest testing level) if roving was absent, but only 36% of listeners could if level roving was present. No one could achieve threshold at the 4000-Hz CF, unlike trained listeners in the literature. The results raise questions about how individual differences affect learning and generalization of monaural and binaural cues related to interaural correlation detection.

Loading

Full text loading...

/deliver/fulltext/asa/journal/jasa/138/1/1.4923014.html;jsessionid=oOsHwxVh-gJpVPuoKGnrnjU6.x-aip-live-06?itemId=/content/asa/journal/jasa/138/1/10.1121/1.4923014&mimeType=html&fmt=ahah&containerItemId=content/asa/journal/jasa
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=asadl.org/jasa/138/1/10.1121/1.4923014&pageURL=http://scitation.aip.org/content/asa/journal/jasa/138/1/10.1121/1.4923014'
Right1,Right2,Right3,