Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/asa/journal/jasa/138/2/10.1121/1.4926438
1.
1. M. Kleiner, B.-I. Dalenbäck, and P. Svensson, “ Auralization—An overview,” J. Audio Eng. Soc. 41(11), 861875 (1993).
2.
2. D. Y. Maa, “ The flutter echoes,” J. Acoust. Soc. Am. 13(2), 170178 (1941).
http://dx.doi.org/10.1121/1.1916161
3.
3. A. Krokstad, S. Strøm, and S. Sørsdal, “ Calculating the acoustical room response by the use of a ray tracing technique,” J. Sound Vib. 8(1), 118125 (1968).
http://dx.doi.org/10.1016/0022-460X(68)90198-3
4.
4. V. Välimäki, J. Parker, L. Savioja, J. O. Smith, and J. S. Abel, “ Fifty years of artificial reverberation,” IEEE Trans. Audio Speech Lang. Proc. 20(5), 14211448 (2012).
http://dx.doi.org/10.1109/TASL.2012.2189567
5.
5. M. Vorländer, Auralization: Fundamentals of Acoustics, Modelling, Simulation, Algorithms, and Acoustic Virtual Reality ( Springer-Verlag, Berlin, Germany, 2007), 335 pp.
6.
6. L. Savioja, J. Saarelma, and J. Botts, “ Challenges in measurement of performance of an acoustics simulation,” in Proceedings of the 7th Forum Acusticum ( Krakow, Poland, 2014), p. SS17.2.
7.
7. M. R. Schroeder, B. S. Atal, and C. Bird, “ Digital computers in room acoustics,” in Proceedings of the 4th International Conference on Acoustics, Copenhagen, Denmark (1962), pp. M21.1M21.4.
8.
8. M. R. Schroeder, “ Digital simulation of sound transmission in reverberant spaces,” J. Acoust. Soc. Am. 47[2(Part 1)], 424431 (1970).
http://dx.doi.org/10.1121/1.1911541
9.
9. H. Kuttruff, “ A simple iteration scheme for the computation of decay constants in enclosures with diffusely reflecting boundaries,” J. Acoust. Soc. Am. 98(1), 288293 (1995).
http://dx.doi.org/10.1121/1.413727
10.
10. M. Vorländer, “ International round robin on room acoustical computer simulations,” in Proceedings of the 15th International Congress on Acoustics, Trondheim, Norway (1995), pp. 689692.
11.
11. H. Kuttruff, Room Acoustics, 2nd ed. ( Applied Science, Essex, England, 1979), 309 pp.
12.
12. W. C. Sabine, “ Theater acoustic,” in Collected Papers on Acoustics ( Harvard University Press, Cambridge, 1922), Chap. 7, pp. 163198.
13.
13. A. Davis and N. Fleming, “ Sound pulse photography as applied to the study of architectural acoustics,” J. Sci. Instrum. 3(12), 393398 (1926).
http://dx.doi.org/10.1088/0950-7671/3/12/301
14.
14. V. Knudsen, “ Recent developments in architectural acoustics,” Rev. Mod. Phys. 6(1), 122 (1934).
http://dx.doi.org/10.1103/RevModPhys.6.1
15.
15. K. Schuster and E. Waetzmann, “ Über den Nachhall in geschlossenen Räumen” (“About the reverberation in closed rooms”), Ann. Phys. 393(5), 671695 (1929).
http://dx.doi.org/10.1002/andp.19293930505
16.
16. J. C. Allred and A. Newhouse, “ Applications of the Monte Carlo method to architectural acoustics,” J. Acoust. Soc. Am. 30(1), 13 (1958).
http://dx.doi.org/10.1121/1.1909368
17.
17. B. S. Atal and M. R. Schroeder, “ Study of sound decay using ray-tracing techniques on a digital computer,” J. Acoust. Soc. Am. 41(6), 1598 (1967).
http://dx.doi.org/10.1121/1.2143658
18.
18. M. R. Schroeder, “ Computer models for concert hall acoustics,” Am. J. Phys. 41, 461471 (1973).
http://dx.doi.org/10.1119/1.1987272
19.
19. E. N. Gilbert, “ An iterative calculation of auditorium reverberation,” J. Acoust. Soc. Am. 69(1), 178184 (1981).
http://dx.doi.org/10.1121/1.385362
20.
20. A. Krokstad, S. Strøm, and S. Sørsdal, “ Fifteen years' experience with computerized ray tracing,” Appl. Acoust. 16(4), 291312 (1983).
http://dx.doi.org/10.1016/0003-682X(83)90021-X
21.
21. A. M. Ondet and J. L. Barbry, “ Modeling of sound propagation in fitted workshops using ray tracing,” J. Acoust. Soc. Am. 85(2), 787796 (1989).
http://dx.doi.org/10.1121/1.397551
22.
22. H. Kuttruff, “ Digital simulation of concert hall acoustics and its applications,” Acoust. Bull. 16(5), 58 (1991).
23.
23. G. Naylor, “ Computer modeling and auralisation of sound fields in rooms,” Appl. Acoust. 38(2–4), 8992 (1993).
http://dx.doi.org/10.1016/0003-682X(93)90044-7
24.
24. G. Naylor, “ Odeon—another hybrid room acoustical model,” Appl. Acoust. 38(2–4), 131143 (1993).
http://dx.doi.org/10.1016/0003-682X(93)90047-A
25.
25. B.-I. Dalenbäck, “ A new model for room acoustic prediction and auralization,” Ph.D. thesis, Chalmers University of Technology, Gothenburg, Sweden, 1995.
26.
26. W. Ahnert and R. Feistel, “ EARS auralization software,” J. Audio Eng. Soc. 41(11), 894904 (1993).
27.
27. I. Bork, “ A comparison of room simulation software—The 2nd round robin on room acoustical computer simulation,” Acta Acust. Acust. 86(6), 943956 (2000).
28.
28. I. Bork, “ Report on the 3rd round robin on room acoustical computer simulation—Part II: Calculations,” Acta Acust. Acust. 91(4), 753763 (2005).
29.
29. U. P. Svensson and U. Kristiansen, “ Computational modelling and simulation of acoustic spaces,” in Proceedings of the AES 22nd Conference on Virtual, Synthetic Entertainment Audio, Espoo, Finland (2002), pp. 1130.
30.
30. M. Vorländer, “ Computer simulations in room acoustics: Concepts and uncertainties,” J. Acoust. Soc. Am. 133(3), 12031213 (2013).
http://dx.doi.org/10.1121/1.4788978
31.
31. A. Charalampous and D. Michael, “ Sound propagation in 3D spaces using computer graphics techniques,” in Proceedings of the 20th International Conference on Virtual System Multimedia, Hong Kong, China (2014), pp. 4349.
http://dx.doi.org/10.1109/VSMM.2014.7136674
32.
32. A. Appel, “ Some techniques for shading machine renderings of solids,” in AFIPS 1968 Spring Joint Computer Conference (1968), Vol. 32, pp. 745.
http://dx.doi.org/10.1145/1468075.1468082
33.
33. N. Raghuvanshi, C. Lauterbach, A. Chandak, D. Manocha, and M. Lin, “ Real-time sound synthesis and propagation for games,” Commun. ACM 50(7), 6673 (2007).
http://dx.doi.org/10.1145/1272516.1272541
34.
34. H. Samet, The Design and Analysis of Spatial Data Structures ( Addison-Wesley, Reading, MA, 1990), 493 pp.
35.
35. U. Stephenson, “ Analytical derivation of a formula for the reduction of computation time by the voxel crossing technique used in room acoustical simulation,” Appl. Acoust. 67(10), 959981 (2006).
http://dx.doi.org/10.1016/j.apacoust.2006.01.005
36.
36. A. Chandak, C. Lauterbach, M. Taylor, Z. Ren, and D. Manocha, “ AD-Frustum: Adaptive frustum tracing for interactive sound propagation,” IEEE Trans. Vis. Comput. Graph. 14(6), 17071722 (2008).
http://dx.doi.org/10.1109/TVCG.2008.111
37.
37. J. Hughes, A. van Dam, M. McGuire, D. Sklar, J. Foley, S. Feiner, and K. Akeley, “ Spatial data structures,” in Computer Graphics, Principles, and Practice, 3rd ed. ( Addison-Wesley Professional, Indianapolis, IN, 2013), Chap. 37, pp. 10651102.
38.
38. H. Kuttruff, “ Auralization of impulse responses modeled on the basis of ray-tracing results,” J. Audio Eng. Soc. 41(11), 876880 (1993).
39.
39. A. D. Pierce, Acoustics ( McGraw-Hill, New York, 1981), pp. 486487.
40.
40. U. Ingard, “ On the reflection of a spherical sound wave from an infinite plane,” J. Acoust. Soc. Am. 23(3), 329335 (1951).
http://dx.doi.org/10.1121/1.1906767
41.
41. F. Mechel, “ Improved mirror source method in room acoustics,” J. Sound Vib. 256(5), 873940 (2002).
http://dx.doi.org/10.1006/jsvi.2002.5025
42.
42. M. Ochmann, “ The complex equivalent source method for sound propagation over an impedance plane,” J. Acoust. Soc. Am. 116(6), 33043311 (2004).
http://dx.doi.org/10.1121/1.1819504
43.
43. G. Taraldsen, “ A note on reflection of spherical waves,” J. Acoust. Soc. Am. 117(6), 33893392 (2005).
http://dx.doi.org/10.1121/1.1904303
44.
44. Y. W. Lam, “ Issues of computer modelling of room acoustics in non-concert hall settings,” Acoust. Sci. Tech. 26(2), 145155 (2005).
http://dx.doi.org/10.1250/ast.26.145
45.
45.ISO 354:2003, “ Measurement of sound absorption in a reverberation room” (International Organization for Standardization, Geneva, Switzerland, 2003).
46.
46. C.-H. Jeong, “ Absorption and impedance boundary conditions for phased geometrical-acoustics methods,” J. Acoust. Soc. Am. 132(4), 23472358 (2012).
http://dx.doi.org/10.1121/1.4740494
47.
47. J. H. Rindel, “ Modelling the angle-dependent pressure reflection factor,” Appl. Acoust. 38(2–4), 223234 (1993).
http://dx.doi.org/10.1016/0003-682X(93)90053-9
48.
48. M. L. S. Vercammen, “ Sound concentration caused by curved surfaces,” Ph.D. thesis, Eindhoven University of Technology, The Netherlands, 2011.
49.
49. J. W. S. Rayleigh, The Theory of Sound, 2nd ed. ( Dover Publications, New York, 1945) (republication of the original 2nd edition in 1896 by Macmillan Company), pp. 8996.
50.
50. V. Twersky, “ On scattering and reflection of sound by rough surfaces,” J. Acoust. Soc. Am. 29(2), 209225 (1957).
http://dx.doi.org/10.1121/1.1908834
51.
51. M. A. Biot, “ Generalized boundary condition for multiple scatter in acoustic reflection,” J. Acoust. Soc. Am. 44(6), 16161622 (1968).
http://dx.doi.org/10.1121/1.1911304
52.
52. S. Siltanen, T. Lokki, S. Tervo, and L. Savioja, “ Modeling incoherent reflections from rough room surfaces with image sources,” J. Acoust. Soc. Am. 131(6), 46064614 (2012).
http://dx.doi.org/10.1121/1.4711013
53.
53. M. Vorländer and E. Mommertz, “ Definition and measurement of random-incidence scattering coefficients,” Appl. Acoust. 60(2), 187199 (2000).
http://dx.doi.org/10.1016/S0003-682X(99)00056-0
54.
54. T. J. Cox, B.-I. Dalenbäck, P. D'Antonio, J. J. Embrechts, J. Y. Jeon, E. Mommertz, and M. Vorländer, “ A tutorial on scattering and diffusion coefficients for room acoustic surfaces,” Acta Acust. Acust. 92(1), 115 (2006).
55.
55. F. Nicodemus, “ Directional reflectance and emissivity of an opaque surface,” Appl. Opt. 4(7), 767775 (1965).
http://dx.doi.org/10.1364/AO.4.000767
56.
56. S. Siltanen, T. Lokki, S. Kiminki, and L. Savioja, “ The room acoustic rendering equation,” J. Acoust. Soc. Am. 122(3), 16241635 (2007).
http://dx.doi.org/10.1121/1.2766781
57.
57. J. H. Rindel, “ Attenuation of sound reflections due to diffraction,” in Proceedings of the Nordic Acoustical Meeting, Aalborg, Denmark (1986), pp. 257260.
58.
58. H. Kuttruff, “ Simulierte nachhallkurven in rechteckräumen mit diffusem schallfeld” (“Simulated reverberation curves in rectangular rooms with diffuse sound fields”), Acustica 25(6), 333342 (1971).
59.
59. W. B. Joyce, “ Exact effect of surface roughness on the reverberation time of a uniformly absorbing spherical enclosure,” J. Acoust. Soc. Am. 64(5), 14291436 (1978).
http://dx.doi.org/10.1121/1.382120
60.
60. E.-M. Nosal, M. Hodgson, and I. Ashdown, “ Improved algorithms and methods for room sound-field prediction by acoustical radiosity in arbitrary polyhedral rooms,” J. Acoust. Soc. Am. 116(2), 970980 (2004).
http://dx.doi.org/10.1121/1.1772400
61.
61. J. T. Kajiya, “ The rendering equation,” in the 13th Annual Conference on Computer Graphics Interaction Techniques, Dallas, TX (1986), pp. 143150.
http://dx.doi.org/10.1145/15886.15902
62.
62. N. Tsingos and J. Gascuel, “ A general model for the simulation of room acoustics based on hierarchical radiosity,” in Visual Proceedings of Art Interdisciplinary Programs SIGGRAPH'97, Los Angeles, CA (1997) For a more complete version, see associated white paper “Acoustic simulation using hierarchical time-varying radiant exchanges.”
63.
63. D. Alarcão, “ Acoustic modelling for virtual spaces,” Ph.D. thesis, Instituto Superior Tecnico, TULisbon, Portugal, 2005.
64.
64. S. Siltanen, T. Lokki, and L. Savioja, “ Frequency domain acoustic radiance transfer for real-time auralization,” Acta Acust. Acust. 95(1), 106117 (2009).
http://dx.doi.org/10.3813/AAA.918132
65.
65. T. Lewers, “ A combined beam tracing and radiant exchange computer model of room acoustics,” Appl. Acoust. 38(2–4), 161178 (1993).
http://dx.doi.org/10.1016/0003-682X(93)90049-C
66.
66. J. M. Navarro, F. Jacobsen, J. Escolano, and J. J. López, “ A theoretical approach to room acoustic simulations based on a radiative transfer model,” Acta Acust. Acust. 96(6), 10781089 (2010).
http://dx.doi.org/10.3813/AAA.918369
67.
67. J. Picaut, L. Simon, and J.-D. Polack, “ A mathematical model of diffuse sound field based on a diffusion equation,” Acta Acust. Acust. 83(4), 614621 (1997).
68.
68. V. Valeau, J. Picaut, and M. Hodgson, “ On the use of a diffusion equation for room-acoustic prediction,” J. Acoust. Soc. Am. 119(3), 15041513 (2006).
http://dx.doi.org/10.1121/1.2161433
69.
69. M. A. Biot and I. Tolstoy, “ Formulation of wave propagation in infinite media by normal coordinates with an application to diffraction,” J. Acoust. Soc. Am. 29(3), 381391 (1957).
http://dx.doi.org/10.1121/1.1908899
70.
70. R. Torres, U. P. Svensson, and M. Kleiner, “ Computation of edge diffraction for more accurate room acoustics auralization,” J. Acoust. Soc. Am. 109(2), 600610 (2001).
http://dx.doi.org/10.1121/1.1340647
71.
71. J. B. Keller, “ Geometrical theory of diffraction,” J. Opt. Soc. Am. 52(2), 116130 (1962).
http://dx.doi.org/10.1364/JOSA.52.000116
72.
72. R. Kouyoumjian and P. Pathak, “ A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface,” Proc. IEEE 62(11), 14481461 (1974).
http://dx.doi.org/10.1109/PROC.1974.9651
73.
73. J. Vanderkooy, “ A simple theory of cabinet edge diffraction,” J. Audio Eng. Soc. 39(12), 923933 (1991).
74.
74. N. Tsingos and J. Gascuel, “ Fast rendering of sound occlusion and diffraction effects for virtual acoustic environments,” in Audio Engineering Society Convention, Vol. 104, Preprint no. 4699, Amsterdam, The Netherlands (1998).
75.
75. N. Tsingos, C. Dachsbacher, and S. Lefebvre, “ Instant sound scattering,” in Proceedings of the 18th Eurographics Symposium on Rendering Techniques, Grenoble, France (2007), pp. 111120.
http://dx.doi.org/10.2312/EGWR/EGSR07/111-120
76.
76. J. Goodman, “ Foundations of scalar diffraction theory,” in Introduction to Fourier Optics, 2nd ed. ( McGraw-Hill, New York, 1996), Chap. 3.
77.
77. B. Kapralos, M. Jenkin, and E. Milios, “ Sonel mapping: A probabilistic acoustical modeling method,” Build. Acoust. 15(4), 289313 (2008).
http://dx.doi.org/10.1260/135101008786939973
78.
78. E. Skudrzyk, The Foundations of Acoustics ( Springer Vienna, Vienna, Austria, 1971), pp. 519531.
79.
79. Y. Sakurai and K. Nagata, “ Sound reflections of a rigid plane panel and of the ‘live end' composed by those panels,” J. Acoust. Soc. Jpn. 2(1), 514 (1981).
http://dx.doi.org/10.1250/ast.2.5
80.
80. G. M. Jebsen and H. Medwin, “ On the failure of the Kirchhoff assumption in backscatter,” J. Acoust. Soc. Am. 72(5), 16071611 (1982).
http://dx.doi.org/10.1121/1.388496
81.
81. A. D. Pierce, “ Diffraction of sound around corners and over wide barriers,” J. Acoust. Soc. Am. 55(5), 941955 (1974).
http://dx.doi.org/10.1121/1.1914668
82.
82. U. Stephenson, “ Quantized pyramidal beam tracing—a new algorithm for room acoustics and noise immission prognosis,” Acta Acust. Acust. 82(3), 517525 (1996).
83.
83. U. Stephenson, “ An energetic approach for the simulation of diffraction within ray tracing based on the uncertainty relation,” Acta Acust. Acust. 96(3), 516535 (2010).
http://dx.doi.org/10.3813/AAA.918304
84.
84. D. Schröder and A. Pohl, “ Real-time hybrid simulation method including edge diffraction,” in Proceedings of the EAA Auralization Symposium, Espoo, Finland (2009).
85.
85. A. Pohl, “ Simulation of diffraction based on the uncertainty relation—An efficient simulation method combining higher order diffractions and reflections,” Ph.D. thesis, HafenCity Universität, Hamburg, Germany, 2013.
86.
86. G. Benedetto and R. Spagnolo, “ A study of barriers in enclosures by a ray-tracing computer model,” Appl. Acoust. 17(3), 183199 (1984).
http://dx.doi.org/10.1016/0003-682X(84)90036-7
87.
87. R. Heinisch and T. Chou, “ Numerical experiments in modeling diffraction phenomena,” Appl. Opt. 10(10), 22482251 (1971).
http://dx.doi.org/10.1364/AO.10.002248
88.
88.ISO 3382-1, “ Acoustics—Measurement of room acoustic parameters—Part 1: Performance spaces” (International Organization for Standardization, Geneva, Switzerland, 2009).
89.
89. F. Otondo and J. H. Rindel, “ The influence of the directivity of musical instruments in a room,” Acta Acust. Acust. 90(6), 11781184 (2004).
90.
90. L. M. Wang and M. C. Vigeant, “ Evaluations of output from room acoustic computer modeling and auralization due to different sound source directionalities,” Appl. Acoust. 69(12), 12811293 (2008).
http://dx.doi.org/10.1016/j.apacoust.2007.09.004
91.
91. M. C. Vigeant, L. M. Wang, and J. H. Rindel, “ Investigations of orchestra auralizations using the multi-channel multi-source auralization technique,” Acta Acust. Acust. 94(6), 866882 (2008).
http://dx.doi.org/10.3813/AAA.918105
92.
92. J. Pätynen and T. Lokki, “ Directivities of symphony orchestra instruments,” Acta Acust. Acust. 96(1), 138167 (2010).
http://dx.doi.org/10.3813/AAA.918265
93.
93. H. Carslaw, “ Some multiform solutions of the partial differential equations of physical mathematics and their applications,” Proc. London Math. Soc. 30(1), 121161 (1899).
94.
94. L. Cremer, Die wissenschaftlichen Grundlagen der Raumakustik: Geometrische Raumakustik (The Scientific Basis of Room Acoustics: Geometrical Room Acoustics) ( S. Hirzel Verlag, Stuttgart, Germany, 1948), pp. 1529.
95.
95. D. Mintzer, “ Transient sounds in rooms,” J. Acoust. Soc. Am. 22(3), 341352 (1950).
http://dx.doi.org/10.1121/1.1906609
96.
96. B. M. Gibbs and D. K. Jones, “ A simple image method for calculating the distribution of sound pressure levels within an enclosure,” Acustica 26(1), 2432 (1972).
97.
97. J. B. Allen and D. A. Berkley, “ Image method for efficiently simulating small-room acoustics,” J. Acoust. Soc. Am. 65(4), 943950 (1979).
http://dx.doi.org/10.1121/1.382599
98.
98. M. Aretz, P. Dietrich, and M. Vorländer, “ Application of the mirror source method for low frequency sound prediction in rectangular rooms,” Acta Acust. Acust. 100(2), 306319 (2014).
http://dx.doi.org/10.3813/AAA.918710
99.
99. L. Savioja, J. Huopaniemi, T. Lokki, and R. Väänänen, “ Creating interactive virtual acoustic environments,” J. Audio Eng. Soc. 47(9), 675705 (1999).
100.
100. S. G. McGovern, “ Fast image method for impulse response calculations of box-shaped rooms,” Appl. Acoust. 70(1), 182189 (2009).
http://dx.doi.org/10.1016/j.apacoust.2008.02.003
101.
101. E. A. Lehmann and A. M. Johansson, “ Diffuse reverberation model for efficient image-source simulation of room impulse responses,” IEEE Trans. Audio Speech Lang. Process. 18(6), 14291439 (2010).
http://dx.doi.org/10.1109/TASL.2009.2035038
102.
102. U. Kristiansen, A. Krokstad, and T. Follestad, “ Extending the image method to higher-order reflections,” Appl. Acoust. 38(2–4), 195206 (1993).
http://dx.doi.org/10.1016/0003-682X(93)90051-7
103.
103. E. A. Lehmann and A. M. Johansson, “ Prediction of energy decay in room impulse responses simulated with an image-source model,” J. Acoust. Soc. Am. 124(1), 269277 (2008).
http://dx.doi.org/10.1121/1.2936367
104.
104. F. Santon, “ Numerical prediction of echograms and of the intelligibility of speech in rooms,” J. Acoust. Soc. Am. 59(6), 13991405 (1976).
http://dx.doi.org/10.1121/1.381027
105.
105. J. Borish, “ Extension of the image model to arbitrary polyhedral,” J. Acoust. Soc. Am. 75(6), 18271836 (1984).
http://dx.doi.org/10.1121/1.390983
106.
106. H. Lee and B.-H. Lee, “ An efficient algorithm for the image model technique,” Appl. Acoust. 24(2), 87115 (1988).
http://dx.doi.org/10.1016/0003-682X(88)90033-3
107.
107. D. Schröder and T. Lentz, “ Real-time processing of image sources using binary space partitioning,” J. Audio Eng. Soc. 54(7–8), 604619 (2006).
108.
108. M. Vorländer, “ Die Genauigkeit von Berechnungen mit dem raumakustischen Schallteilchenmodell und ihre Abhängigkeit von der Rechenzeit” (“The accuracy of calculations using the room acoustical ray-tracing-model and its dependence on the calculation time”), Acustica 66(2), 9096 (1988).
109.
109. M. Vorländer, “ Simulation of the transient and steady-state sound propagation in rooms using a new combined ray-tracing/image-source algorithm,” J. Acoust. Soc. Am. 86(1), 172178 (1989).
http://dx.doi.org/10.1121/1.398336
110.
110. H. Lehnert, “ Systematic errors of the ray-tracing algorithm,” Appl. Acoust. 38(2–4), 207221 (1993).
http://dx.doi.org/10.1016/0003-682X(93)90052-8
111.
111. U. Stephenson, “ Eine Schallteilchen-Computersimulation zur Berechnung der für die Hörsamkeit in Konzertsälen maßgebenden Parameter” (“An acoustic computer simulation technique for calculating parameters relevant to subjective acoustical impression in concert halls”), Acustica 59(1), 120 (1985).
112.
112. U. Stephenson, “ Comparison of the mirror image source method and the sound particle simulation method,” Appl. Acoust. 29(1), 3572 (1990).
http://dx.doi.org/10.1016/0003-682X(90)90070-B
113.
113. H. Kuttruff and T. Straßen, “ Zur Abhängigkeit des Raumnachhalls von der Wanddiffusität und von der Raumform” (“On the dependence of reverberation time on the ‘wall diffusion' and on room shape”), Acustica 45(4), 246255 (1980).
114.
114. D. Schröder and A. Pohl, “ Modeling (Non-)uniform scattering distributions in geometrical acoustics,” Proc. Meet. Acoust. 19, 015112 (2013).
http://dx.doi.org/10.1121/1.4800288
115.
115. R. Heinz, “ Entwicklung und Beurteilung von computergestützten Methoden zur binauralen Raumsimulation” (“Development and evaluation of computer-assisted methods for binaural room simulation”), Ph.D. thesis, RWTH Aachen, Germany, 1994.
116.
116. D. Schröder, P. Dross, and M. Vorländer, “ A fast reverberation estimator for virtual environments,” in AES 30th International Conference on Intelligent Audio Environments, Saariselkä, Finland (2007), Paper 13.
117.
117. T. Whitted, “ An improved illumination model for shaded display,” Commun. ACM 23(6), 343349 (1980).
http://dx.doi.org/10.1145/358876.358882
118.
118. M. L. Mehta and K. A. Mulholland, “ Effect of non-uniform distribution of absorption on reverberation time,” J. Sound Vib. 46(2), 209224 (1976).
http://dx.doi.org/10.1016/0022-460X(76)90438-7
119.
119. C. L. Christensen and J. H. Rindel, “ A new scattering method that combines roughness and diffraction effects,” in Proceedings of Forum Acusticum, Budapest, Hungary (2005).
120.
120. A. Kulowski, “ Error investigation for the ray tracing technique,” Appl. Acoust. 15(4), 263274 (1982).
http://dx.doi.org/10.1016/0003-682X(82)90061-5
121.
121. J. K. Haviland and B. D. Thanedar, “ Monte Carlo applications to acoustical field solutions,” J. Acoust. Soc. Am. 54(6), 14421448 (1973).
http://dx.doi.org/10.1121/1.1914443
122.
122. J. Walsh, “ The design of Godot: A system for computer-aided room acoustics modeling and simulation,” in Proceedings of the 10th International Congress on Acoustics, Sydney, Australia (1980), Paper E-15.3.
123.
123. J. Walsh and M. Rivard, “ Signal processing aspects of Godot: A system for computer-aided room acoustics modeling and simulation,” in 72nd Convention of the Audio Engineering Society, Anaheim, CA (1982), Preprint 1910.
124.
124. N. Dadoun, D. Kirkpatrick, and J. Walsh, “ The geometry of beam tracing,” in Proceedings of the First Annual Symposium on Computational Geometry SSG'85, ACM Press, New York, 1985, pp. 5561.
http://dx.doi.org/10.1145/323233.323241
125.
125. D. van Maercke, “ Simulation of sound fields in time and frequency domain using a geometrical model,” in Proceedings of the 12th International Congress on Acoustics, Toronto, Ontario, Canada (1986), Vol. 2, paper E11-7.
126.
126. D. van Maercke and J. Martin, “ The prediction of echograms and impulse responses within the Epidaure software,” Appl. Acoust. 38(2–4), 93114 (1993).
http://dx.doi.org/10.1016/0003-682X(93)90045-8
127.
127. R. Heinz, “ Binaural room simulation based on an image source model with addition of statistical methods to include the diffuse sound scattering of walls and to predict the reverberant tail,” Appl. Acoust. 38(2–4), 145159 (1993).
http://dx.doi.org/10.1016/0003-682X(93)90048-B
128.
128. A. Farina, “ RAMSETE—A new Pyramid Tracer for medium and large scale acoustic problems,” in Proceedings of Euro-Noise, Lyon, France (1995).
129.
129. B.-I. Dalenbäck, “ Room acoustic prediction based on a unified treatment of diffuse and specular reflection,” J. Acoust. Soc. Am. 100(2), 899909 (1996).
http://dx.doi.org/10.1121/1.416249
130.
130. I. Drumm and Y. W. Lam, “ The adaptive beam-tracing algorithm,” J. Acoust. Soc. Am. 107(3), 14051412 (2000).
http://dx.doi.org/10.1121/1.428427
131.
131. N. Campo, P. Rissone, and M. Toderi, “ Adaptive pyramid tracing: A new technique for room acoustics,” Appl. Acoust. 61(2), 199221 (2000).
http://dx.doi.org/10.1016/S0003-682X(99)00072-9
132.
132. A. Chandak, L. Antani, M. Taylor, and D. Manocha, “ FastV: From-point visibility culling on complex models,” Comput. Graph. Forum 28(4), 12371246 (2009).
http://dx.doi.org/10.1111/j.1467-8659.2009.01501.x
133.
133. C. Lauterbach, A. Chandak, and D. Manocha, “ Interactive sound rendering in complex and dynamic scenes using frustum tracing,” IEEE Trans. Vis. Comput. Graph. 13(6), 16721679 (2007).
http://dx.doi.org/10.1109/TVCG.2007.70567
134.
134. C.-H. Jeong, J.-G. Ih, and J. H. Rindel, “ An approximate treatment of reflection coefficient in the phased beam tracing method for the simulation of enclosed sound fields at medium frequencies,” Appl. Acoust. 69(7), 601613 (2008).
http://dx.doi.org/10.1016/j.apacoust.2007.02.002
135.
135. B. Yousefzadeh and M. Hodgson, “ Energy- and wave-based beam-tracing prediction of room-acoustical parameters using different boundary conditions,” J. Acoust. Soc. Am. 132(3), 14501461 (2012).
http://dx.doi.org/10.1121/1.4739461
136.
136. T. Funkhouser, I. Carlbom, G. Elko, G. Pingali, M. Sondhi, and J. West, “ A beam tracing approach to acoustic modeling for interactive virtual environments,” in SIGGRAPH'98 Proceedings of the 25th Conference of Computer Graphics and Interactive Techniques, New York (1998), pp. 2132.
http://dx.doi.org/10.1145/280814.280818
137.
137. T. Funkhouser, N. Tsingos, I. Carlbom, G. Elko, M. Sondhi, J. E. West, G. Pingali, P. Min, and A. Ngan, “ A beam tracing method for interactive architectural acoustics,” J. Acoust. Soc. Am. 115(2), 739756 (2004).
http://dx.doi.org/10.1121/1.1641020
138.
138. P. Heckbert and P. Hanrahan, “ Beam tracing polygonal objects,” in Proceedings of the 11th Conference of Computer Graphics and Interactive Techniques, New York (1984), pp. 119127.
http://dx.doi.org/10.1145/800031.808588
139.
139. N. Tsingos, T. Funkhouser, A. Ngan, and I. Carlbom, “ Modeling acoustics in virtual environments using the uniform theory of diffraction,” in SIGGRAPH'01 Proceedings of the 28th Conference of Computer Graphics and Interactive Techniques, Los Angeles, CA (2001), pp. 545552.
http://dx.doi.org/10.1145/383259.383323
140.
140. S. Laine, S. Siltanen, T. Lokki, and L. Savioja, “ Accelerated beam tracing algorithm,” Appl. Acoust. 70(1), 172181 (2009).
http://dx.doi.org/10.1016/j.apacoust.2007.11.011
141.
141. F. Antonacci, M. Foco, A. Sarti, and S. Tubaro, “ Fast tracing of acoustic beams and paths through visibility lookup,” IEEE Trans. Audio Speech Lang. Process. 16(4), 812824 (2008).
http://dx.doi.org/10.1109/TASL.2008.920064
142.
142. F. Antonacci, A. Sarti, and S. Tubaro, “ Two-dimensional beam tracing from visibility diagrams for real-time acoustic rendering,” EURASIP J. Adv. Signal Process. 2010(1), 642316 (2010).
http://dx.doi.org/10.1155/2010/642316
143.
143. J. H. Rindel, G. B. Nielsen, and C. L. Christensen, “ Diffraction around corners and over wide barriers in room acoustic simulations,” in Proceedings of the 16th International Congress on Sound Vibration, Krakow, Poland (2009).
144.
144. P. T. Calamia, “ Advances in edge-diffraction modeling for virtual-acoustic simulations,” Ph.D. thesis, Princeton University, NJ, 2009.
145.
145. T. Lokki, “ Physically-based auralization—Design, implementation, and evaluation,” Ph.D. thesis, Helsinki University of Technology, Finland, report TML-A5, 2002.
146.
146. D. Schröder, “ Physically based real-time auralization of interactive virtual environments,” Ph.D. thesis, RWTH Aachen, Germany, 2011.
147.
147. M. Taylor, A. Chandak, Z. Ren, C. Lauterbach, and D. Manocha, “ Fast edge-diffraction for sound propagation in complex virtual environments,” in Proceedings of the EAA Auralization Symposium, Espoo, Finland (2009).
148.
148. L. Antani, A. Chandak, M. Taylor, and D. Manocha, “ Efficient finite-edge diffraction using conservative from-region visibility,” Appl. Acoust. 73(3), 218233 (2012).
http://dx.doi.org/10.1016/j.apacoust.2011.09.004
149.
149. A. Billon and J. J. Embrechts, “ A diffraction model for acoustical ray-tracing based on the energy flow lines concept,” Acta Acust. Acust. 99(2), 260267 (2013).
http://dx.doi.org/10.3813/AAA.918608
150.
150. Z. Yamauti, “ The light flux distribution of a system of interreflecting surfaces,” J. Opt. Soc. Am. 13(5), 561571 (1926).
http://dx.doi.org/10.1364/JOSA.13.000561
151.
151. C. Goral, K. Torrance, D. Greenberg, and B. Battaile, “ Modeling the interaction of light between diffuse surfaces,” ACM SIGGRAPH Comput. Graph. 18(3), 213222 (1984).
http://dx.doi.org/10.1145/964965.808601
152.
152. D. S. Immel, M. F. Cohen, and D. P. Greenberg, “ A radiosity method for non-diffuse environments,” ACM SIGGRAPH Comput. Graph. 20(4), 133142 (1986).
http://dx.doi.org/10.1145/15886.15901
153.
153. H. Kuttruff, “ Nachhall und effektive absorption in raumen mit diffuser wandreflexion” (“Reverberation and effective absorption in rooms with diffuse wall reflexions”), Acustica 35(3), 141153 (1976).
154.
154. H. Kuttruff, “ Energetic sound propagation in rooms,” Acustica 83(4), 622628 (1997).
155.
155. G. Moore, “ An approach to the analysis of sound in auditoria. Model design and computer implementation,” Ph.D. thesis, University of Cambridge, UK, 1984.
156.
156. E. M. Sparrow, E. R. G. Eckert, and V. K. Jonsson, “ An enclosure theory for radiative exchange between specularly and diffusely reflecting surfaces,” J. Heat Trans. 84(4), 294299 (1962).
http://dx.doi.org/10.1115/1.3684375
157.
157. N. Korany, J. Blauert, and O. Abdel Alim, “ Acoustic simulation of rooms with boundaries of partially specular reflectivity,” Appl. Acoust. 62(7), 875887 (2001).
http://dx.doi.org/10.1016/S0003-682X(00)00075-X
158.
158. A. Le Bot and A. Bocquillet, “ Comparison of an integral equation on energy and the ray-tracing technique in room acoustics,” J. Acoust. Soc. Am. 108(4), 17321740 (2000).
http://dx.doi.org/10.1121/1.1287848
159.
159. L. Antani, A. Chandak, M. Taylor, and D. Manocha, “ Direct-to-indirect acoustic radiance transfer,” IEEE Trans. Vis. Comput. Graph. 18(2), 261269 (2012).
http://dx.doi.org/10.1109/TVCG.2011.76
160.
160. H. W. Jensen and N. J. Christensen, “ Photon maps in bidirectional Monte Carlo ray tracing of complex objects,” Comput. Graph. 19(2), 215224 (1995).
http://dx.doi.org/10.1016/0097-8493(94)00145-O
161.
161. M. Bertram, E. Deines, J. Mohring, J. Jegorovs, and H. Hagen, “ Phonon tracing for auralization and visualization of sound,” in Proceedings of the IEEE Visualization, Minneapolis, MN (2005), pp. 151158.
http://dx.doi.org/10.1109/VISUAL.2005.1532790
162.
162. B. Kapralos, M. Jenkin, and E. Milios, “ Sonel mapping: Acoustic modeling utilizing an acoustic version of photon mapping,” in Proceedings of the 3rd IEEE International Workshop on Haptic, Audio Vision Environment. Their Application (2004), pp. 16.
http://dx.doi.org/10.1109/HAVE.2004.1391872
163.
163. A. Pohl and U. Stephenson, “ Combining higher order reflections with diffractions without explosion of computation time: The sound particle radiosity method,” in Proceedings of the EAA Joint Symposium on Auralization Ambisonics, Berlin, Germany (2014).
164.
164. N. C. Baines, “ An investigation of the factors which control non-diffuse sound fields in rooms,” Ph.D. thesis, University of Southampton, UK, March 1983.
165.
165. R. A. Tenenbaum, T. S. Camilo, J. C. B. Torres, and S. N. Y. Gerges, “ Hybrid method for numerical simulation of room acoustics with auralization: part 1—theoretical and numerical aspects,” J. Brazilian Soc. Mech. Sci. Eng. 29(2), 211221 (2007).
http://dx.doi.org/10.1590/S1678-58782007000200012
166.
166. R. A. Tenenbaum, T. S. Camilo, J. C. B. Torres, and L. T. Stutz, “ Hybrid method for numerical simulation of room acoustics: Part 2—validation of the computational code RAIOS 3,” J. Brazilian Soc. Mech. Sci. Eng. 29(2), 222231 (2007).
http://dx.doi.org/10.1590/S1678-58782007000200013
167.
167. G. Koutsouris, J. Brunskog, C.-H. Jeong, and F. Jacobsen, “ Combination of acoustical radiosity and the image source method,” J. Acoust. Soc. Am. 133(6), 39633974 (2013).
http://dx.doi.org/10.1121/1.4802897
168.
168. M. Aretz, “ Combined wave and ray based room acoustic simulations of small rooms,” Ph.D. thesis, RWTH Aachen, Germany, 2012.
169.
169. A. Southern, S. Siltanen, D. Murphy, and L. Savioja, “ Room impulse response synthesis and validation using a hybrid acoustic model,” IEEE Trans. Audio Speech Lang. Process. 21(9), 19401952 (2013).
http://dx.doi.org/10.1109/TASL.2013.2263139
170.
170. D. Schröder and M. Vorländer, “ Hybrid method for room acoustic simulation in real-time,” in Proceedings of the 19th International Congress on Acoustics, Madrid, Spain (2007).
171.
171. F. Wefers and D. Schröder, “ Real-time auralization of coupled rooms,” in Proceedings of the EAA Auralization Symposium, Espoo, Finland (2009).
172.
172. E. Stavrakis, N. Tsingos, and P. T. Calamia, “ Topological sound propagation with reverberation graphs,” Acta Acust. Acust. 94(6), 921932 (2008).
http://dx.doi.org/10.3813/AAA.918109
173.
173. S. Pelzer and M. Vorländer, “ Frequency- and time-dependent geometry for real-time auralizations,” in 20th International Congress on Acoustics, Sydney, Australia (2010).
174.
174. L. Antani, A. Chandak, L. Savioja, and D. Manocha, “ Interactive sound propagation using compact acoustic transfer operators,” ACM Trans. Graph. 31(1), 7:17:12 (2012).
http://dx.doi.org/10.1145/2077341.2077348
175.
175. C. Schissler, R. Mehra, and D. Manocha, “ High-order diffraction and diffuse reflections for interactive sound propagation in large environments,” ACM Trans. Graph. 33(4), 112 (2014).
http://dx.doi.org/10.1145/2601097.2601216
176.
176. J. P. Vian, “ Different computer modelling methods—their merits and their applications,” in Proceedings of the 12th International Congress on Acoustics, Toronto, Ontario, Canada (1986), Paper E4-1.
177.
177. V. Pulkki, T. Lokki, and L. Savioja, “ Implementation and visualization of edge diffraction with image-source method,” in 112th Convention of the Audio Engineering Society, Munich, Germany (2002), Preprint 5603.
178.
178. P. T. Calamia, U. P. Svensson, and T. Funkhouser, “ Integration of edge-diffraction calculations and geometrical-acoustics modeling,” in Proceedings of Forum Acusticum, Budapest, Hungary (2005), pp. 24992504.
179.
179. M. Taylor, A. Chandak, Q. Mo, C. Lauterbach, C. Schissler, and D. Manocha, “ Guided multiview ray tracing for fast auralization,” IEEE Trans. Vis. Comput. Graph. 18(11), 17971810 (2012).
http://dx.doi.org/10.1109/TVCG.2012.27
180.
180. M. Taylor, A. Chandak, L. Antani, and D. Manocha, “ RESound: Interactive sound rendering for dynamic virtual environments,” in Proceedings of the 17th International ACM Conference on Multimedia (2009), pp. 110.
http://dx.doi.org/10.1145/1631272.1631311
181.
181. S. Siltanen, T. Lokki, L. Savioja, and C. L. Christensen, “ Geometry reduction in room acoustics modeling,” Acta Acust. Acust. 94(3), 410418 (2008).
http://dx.doi.org/10.3813/AAA.918049
182.
182. S. Drechsler, “ An algorithm for automatic geometry simplification for room acoustical simulation based on regression planes,” Acta Acust. Acust. 100(5), 956963 (2014).
http://dx.doi.org/10.3813/AAA.918775
183.
183. T. Aila and S. Laine, “ Understanding the efficiency of ray traversal on GPUs,” in Proceedings of High Performance Graphics HPG'09, New Orleans, LA (2009), pp. 145149.
http://dx.doi.org/10.1145/1572769.1572792
184.
184. R. Duraiswami, D. Zotkin, and N. Gumerov, “ Fast evaluation of the room transfer function using multipole expansion,” IEEE Trans. Audio Speech Lang. Proc. 15(2), 565576 (2007).
http://dx.doi.org/10.1109/TASL.2006.876753
http://aip.metastore.ingenta.com/content/asa/journal/jasa/138/2/10.1121/1.4926438
Loading
/content/asa/journal/jasa/138/2/10.1121/1.4926438
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/asa/journal/jasa/138/2/10.1121/1.4926438
2015-08-10
2016-12-03

Abstract

Computerized room acoustics modeling has been practiced for almost 50 years up to date. These modeling techniques play an important role in room acoustic design nowadays, often including auralization, but can also help in the construction of virtual environments for such applications as computer games, cognitive research, and training. This overview describes the main principles, landmarks in the development, and state-of-the-art for techniques that are based on geometrical acoustics principles. A focus is given to their capabilities to model the different aspects of sound propagation: specular vs diffuse reflections, and diffraction.

Loading

Full text loading...

/deliver/fulltext/asa/journal/jasa/138/2/1.4926438.html;jsessionid=Y1rnNNVzlxOVF9KSLKsP4ieN.x-aip-live-03?itemId=/content/asa/journal/jasa/138/2/10.1121/1.4926438&mimeType=html&fmt=ahah&containerItemId=content/asa/journal/jasa
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=asadl.org/jasa/138/2/10.1121/1.4926438&pageURL=http://scitation.aip.org/content/asa/journal/jasa/138/2/10.1121/1.4926438'
Right1,Right2,Right3,