Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/asa/journal/jasa/138/2/10.1121/1.4926901
1.
1. M. A. Biot, “ Theory of propagation of elastic waves in a fluid saturated porous solid. I. Low frequency range,” J. Acoust. Soc. Am. 28, 168178 (1956).
http://dx.doi.org/10.1121/1.1908239
2.
2. M. A. Biot, “ Theory of propagation of elastic waves in a fluid saturated porous solid. II. High frequency range,” J. Acoust. Soc. Am. 28, 179191 (1956).
http://dx.doi.org/10.1121/1.1908241
3.
3. R. D. Stoll, “ Acoustic waves in ocean sediments,” Geophys. 42, 715725 (1977).
http://dx.doi.org/10.1190/1.1440741
4.
4. R. D. Stoll and T. K. Kan, “ Reflection of acoustic waves at a water-sediment interface,” J. Acoust. Soc. Am. 70, 149156 (1981).
http://dx.doi.org/10.1121/1.386692
5.
5. M. J. Isakson, N. P. Chotiros, R. A. Yarbrough, and J. N. Piper, “ Quantifying the effects of roughness scattering on reflection loss measurements,” J. Acoust. Soc. Am. 132, 36873697 (2012).
http://dx.doi.org/10.1121/1.4765304
6.
6. K. L. Williams, D. R. Jackson, E. I. Thorsos, D. Tang, and K. B. Briggs, “ Acoustic backscattering experiments in a well characterized sand sediment: Data/model comparisons using sediment fluid and Biot models,” IEEE J. Ocean Eng. 27, 376387 (2002).
http://dx.doi.org/10.1109/JOE.2002.1040925
7.
7. K. L. Williams, “ An effective density fluid model for acoustic propagation in sediments derived from Biot theory,” J. Acoust. Soc. Am. 110, 22762281 (2001).
http://dx.doi.org/10.1121/1.1412449
8.
8. H. J. Camin and M. J. Isakson, “ A comparison of sediment reflection coefficient measurements to elastic and poro-elastic models,” J. Acoust. Soc. Am. 120, 24372449 (2006).
http://dx.doi.org/10.1121/1.2354002
9.
9. A. L. Bonomo, “ On the use of the finite element method for the modeling of acoustic scattering from one-dimensional rough fluid-poroelastic interfaces,” Master's thesis, The University of Texas at Austin, 2014.
10.
10. Å. Kristensen and J. M. Hovem, “ Sensitivity of bottom loss to attenuation and shear conversion,” in Shear Waves in Marine Sediments, edited by J. M. Hovem, M. D. Richardson, and R. D. Stoll (Springer Netherlands, 1991), pp. 431438.
11.
11. S. J. Hughes, D. M. F. Chapman, and N. R. Chapman, “ The effect of shear wave attenuation on acoustic bottom loss resonance in marine sediments,” in Shear Waves in Marine Sediments, edited by J. M. Hovem, M. D. Richardson, and R. D. Stoll (Springer Netherlands, 1991), pp. 439446.
12.
12. M. A. Ainslie, “ The influence of sediment rigidity on the plane-wave reflection coefficient,” in Shear Waves in Marine Sediments, edited by J. M. Hovem, M. D. Richardson, and R. D. Stoll (Springer Netherlands, 1991), pp. 447454.
13.
13. P. J. Vidmar, “ The effect of sediment rigidity on bottom reflection loss in a typical deep sea sediment,” J. Acoust. Soc. Am. 68, 634638 (1980).
http://dx.doi.org/10.1121/1.384721
14.
14. P. J. Vidmar, “ Ray path analysis of sediment shear wave effects on bottom reflection loss,” J. Acoust. Soc. Am. 68, 639648 (1980).
http://dx.doi.org/10.1121/1.384722
15.
15. J. H. Beebe and C. W. Holland, “ Shallow-water propagation effects over a complex, high-velocity bottom,” J. Acoust. Soc. Am. 80, 244250 (1986).
http://dx.doi.org/10.1121/1.394180
16.
16. S. J. Hughes, D. D. Ellis, D. M. F. Chapman, and P. R. Staal, “ Low-frequency acoustic propagation loss in shallow water over hard-rock seabeds covered by a thin layer of elastic-solid sediment,” J. Acoust. Soc. Am. 88, 283297 (1990).
http://dx.doi.org/10.1121/1.399951
17.
17. D. R. Jackson and M. D. Richardson, High-Frequency Seafloor Acoustics ( Springer Verlag, New York, 2007), pp. 475482.
18.
18. Y. J. Kang and J. S. Bolton, “ Finite element modeling of isotropic elastic porous materials coupled with acoustical finite elements,” J. Acoust. Soc. Am. 98, 635643 (1995).
http://dx.doi.org/10.1121/1.414357
19.
19. R. Panneton and N. Atalla, “ An efficient finite element scheme for solving the three-dimensional poroelasticity problem in acoustics,” J. Acoust. Soc. Am. 101, 32873298 (1997).
http://dx.doi.org/10.1121/1.418345
20.
20. J. F. Allard and N. Atalla, Propagation of Sound in Porous Media, 2nd ed. ( Wiley, West Sussex, England, 2009), pp. 311349.
21.
21. F. Ihlenburg, Finite Element Analysis of Acoustic Scattering ( Springer Verlag, New York, 1998), pp. 158 and 101–188.
22.
22. E. B. Becker, G. F. Carey, and J. T. Oden, Finite Elements: An Introduction ( Prentice-Hall, Englewood Cliffs, 1981), Vol. I, pp. 139.
23.
23. J.-P. Bérenger, Perfectly Matched Layer (PML) for Computational Electromagnetics ( Morgan and Claypool, San Rafael, CA, 2007), pp. 1328.
24.
24. E. I. Thorsos, “ The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum,” J. Acoust. Soc. Am. 83, 7892 (1988).
http://dx.doi.org/10.1121/1.396188
25.
25. M. J. Isakson and N. P. Chotiros, “ Finite element modeling of acoustic scattering from fluid and elastic rough interfaces,” IEEE J. Ocean Eng. 40, 475484 (2014).
http://dx.doi.org/10.1109/JOE.2014.2313060
26.
26.COMSOL AB, COMSOL v. 4.3b Acoustics Module: User's Guide (2013).
27.
27. D. Jackson, “ The small-slope approximation for layered seabeds,” Proc. Meet. Acoust. 19, 070001 (2013).
http://dx.doi.org/10.1121/1.4799790
28.
28. H. Schmidt, “OASES,” Version 2.2: User Guide and Reference Manual, Massachusetts Institute of Technology (1999).
29.
29. L. M. Brekhovskikh and Y. P. Lysanov, Fundamentals of Ocean Acoustics, 3rd ed. ( Springer Verlag, New York, 2003), pp. 6179.
30.
30. D. R. Jackson, R. I. Odom, M. L. Boyd, and A. N. Ivakin, “ A geoacoustic bottom interaction model (GABIM),” IEEE J. Ocean Eng. 35, 603617 (2010).
http://dx.doi.org/10.1109/JOE.2010.2050170
http://aip.metastore.ingenta.com/content/asa/journal/jasa/138/2/10.1121/1.4926901
Loading
/content/asa/journal/jasa/138/2/10.1121/1.4926901
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/asa/journal/jasa/138/2/10.1121/1.4926901
2015-08-11
2016-09-27

Abstract

The effective density fluid model (EDFM) was developed to approximate the behavior of sediments governed by Biots theory of poroelasticity. Previously, it has been shown that the EDFM predicts reflection coefficients and backscattering strengths that are in close agreement with those of the full Biot model for the case of a homogeneous poroelastic half-space. However, it has not yet been determined to what extent the EDFM can be used in place of the full Biot-Stoll model for other cases. Using the finite element method, the flat-interface reflection and rough-interface backscattering predictions of the Biot-Stoll model and the EDFM are compared for the case of a poroelastic layer overlying an elastic substrate. It is shown that considerable differences between the predictions of the two models can exist when the layer is very thin and has a thickness comparable to the wavelength of the shear wave supported by the layer, with a particularly strong disparity under the conditions of a shear wave resonance. For thicker layers, the predictions of the two models are found to be in closer agreement, approaching nearly exact agreement as the layer thickness increases.

Loading

Full text loading...

/deliver/fulltext/asa/journal/jasa/138/2/1.4926901.html;jsessionid=lwws7P8TaxQ4RYQ-2vLixCIn.x-aip-live-02?itemId=/content/asa/journal/jasa/138/2/10.1121/1.4926901&mimeType=html&fmt=ahah&containerItemId=content/asa/journal/jasa
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=asadl.org/jasa/138/2/10.1121/1.4926901&pageURL=http://scitation.aip.org/content/asa/journal/jasa/138/2/10.1121/1.4926901'
Right1,Right2,Right3,