Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. Altoè, A. , Pulkki, V. , and Verhulst, S. (2014). “ Transmission line cochlear models: Improved accuracy and efficiency,” J. Acoust. Soc. Am. 136, EL302EL308.
2. Diependaal, R. J. , Duifhuis, H. , Hoogstraten, H. W. , and Viergever, M. A. (1987). “ Numerical methods for solving one-dimensional cochlear models in the time domain,” J. Acoust. Soc. Am. 82, 16551666.
3. Elliott, S. J. , Ku, E. M. , and Lineton, B. (2007). “ A state space model for cochlear mechanics,” J. Acoust. Soc. Am. 122, 27592771.
4. Greenwood, D. D. (1990). “ A cochlear frequency position function for several species—29 years later,” J. Acoust. Soc. Am. 87, 25922605.
5. Lim, K. M. , and Steele, C. R. (2002). “ A three dimensional nonlinear active cochlear model analyzed by the WKB numeric method,” Hear. Res. 170, 190205.
6. Moleti, A. , Paternoster, N. , Bertaccini, D. , Sisto, R. , and Sanjust, F. (2009). “ Otoacoustic emissions in time-domain solutions of nonlinear non-local cochlear models,” J. Acoust. Soc. Am. 126, 24252536.
7. Robles, L. , and Ruggero, M. A. (2001). “ Mechanics of the mammalian cochlea,” Physiol. Rev. 81, 13051352.
8. Shera, C. A. (2001). “ Intensity-invariance of fine time structure in basilar membrane click responses: Implications for cochlear mechanics,” J. Acoust. Soc. Am. 110, 332348.
9. Sisto, R. , and Moleti, A. (2015). “ On the dependence of the BM gain and phase on the stimulus level,” in Proceedings of the Mechanics of Hearing 2014 Workshop, Sounio (June 23–29, 2014).
10. Sisto, R. , Moleti, A. , Paternoster, N. , Botti, T. , and Bertaccini, D. (2010). “ Different models of the active cochlea, and how to implement them in the state-space formalism,” J. Acoust. Soc. Am. 128, 11911202.
11. Talmadge, C. L. , Tubis, A. , Long, G. R. , and Piskorski, P. (1998). “ Modeling otoacoustic emission and hearing threshold fine structures,” J. Acoust. Soc. Am. 104, 15171543.
12. Zweig, G. (1991). “ Finding the impedance of the organ of Corti,” J. Acoust. Soc. Am. 89, 12291254.

Data & Media loading...


Article metrics loading...



In animal experiments, the strong dependence on stimulus level of the basilar membrane gain and tuning is not matched by a corresponding change in the phase slope in the resonant region. Linear models, in which the gain dependence on the stimulus level has to be schematized by explicitly changing the tuning parameters of the resonant model, do not easily match this feature of the experimental data. Nonlinear models predict a phase slope that is relatively decoupled from tuning. In addition, delayed-stiffness and feed-forward models also show a significant intrinsic decoupling between gain and tuning, which helps in matching the experimental data.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd