Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/asa/journal/jasa/138/3/10.1121/1.4927418
1.
1.29 CFR 1910.95 (2008). “ Occupational noise exposure,” in Occupational Safety and Health Standards ( Office of Federal Register, Washington, DC).
2.
2. Abbas, P. J. (1988). “ Electrophysiology of the auditory system,” Clin. Phys. Physiol. Meas. 9, 131.
http://dx.doi.org/10.1088/0143-0815/9/1/001
3.
3.American National Standards Institute (ANSI) (1989). ANSI S1.8-1989, Reference Quantities for Acoustical Levels ( Acoustical Society of America, New York).
4.
4.American National Standards Institute (ANSI) (1994). ANSI S1.1-1994 (R 2004), Acoustical Terminology ( Acoustical Society of America, New York).
5.
5. Awbrey, F. T. , Thomas, J. A. , and Kastelein, R. A. (1988). “ Low-frequency underwater hearing sensitivity in belugas, Delphinapterus leucas,” J. Acoust. Soc. Am. 84, 22732275.
http://dx.doi.org/10.1121/1.397022
6.
6. Benitez, L. D. , Eldredge, D. H. , and Templer, J. W. (1972). “ Temporary threshold shifts in chinchilla: Electrophysiological correlates,” J. Acoust. Soc. Am. 52, 11151123.
http://dx.doi.org/10.1121/1.1913222
7.
7. Botsford, J. H. (1971). “ Theory of temporary threshold shift,” J. Acoust. Soc. Am. 49, 440446.
http://dx.doi.org/10.1121/1.1912370
8.
8. Branstetter, B. K. , and Finneran, J. J. (2008). “ Comodulation masking release in bottlenose dolphins (Tursiops truncatus),” J. Acoust. Soc. Am. 124, 625633.
http://dx.doi.org/10.1121/1.2918545
9.
9. Cody, A. R. , and Johnstone, B. M. (1981). “ Acoustic trauma: Single neuron basis for the ‘Half-Octave Shift,’ ” J. Acoust. Soc. Am. 70, 707711.
http://dx.doi.org/10.1121/1.386906
10.
10.Department of the Navy (DoN) (2001). Final Overseas Environmental Impact Statement and Environmental Impact Statement for Surveillance Towed Array Sensor System Low Frequency Active (SURTASS LFA) Sonar ( Department of the Navy, Washington, DC).
11.
11.Department of the Navy (DoN) (2008). Atlantic Fleet Active Sonar Training: Final Environmental Impact Statement/ Overseas Environmental Impact Statement (FEIS/OEIS) ( Department of the Navy, Washington, DC).
12.
25. Finneran, J. J. , Carder, D. A. , Dear, R. , Belting, T. , McBain, J. , Dalton, L. , and Ridgway, S. H. (2005b). “ Pure tone audiograms and possible aminoglycoside-induced hearing loss in belugas (Delphinapterus leucas),” J. Acoust. Soc. Am. 117, 39363943.
http://dx.doi.org/10.1121/1.1893354
13.
12. Finneran, J. J. , Carder, D. A. , Schlundt, C. E. , and Dear, R. L. (2010a). “ Growth and recovery of temporary threshold shift (TTS) at 3 kHz in bottlenose dolphins (Tursiops truncatus),” J. Acoust. Soc. Am. 127, 32563266.
http://dx.doi.org/10.1121/1.3372710
14.
13. Finneran, J. J. , Carder, D. A. , Schlundt, C. E. , and Dear, R. L. (2010b). “ Temporary threshold shift in a bottlenose dolphin (Tursiops truncatus) exposed to intermittent tones,” J. Acoust. Soc. Am. 127, 32673272.
http://dx.doi.org/10.1121/1.3377052
15.
14. Finneran, J. J. , Carder, D. A. , Schlundt, C. E. , and Ridgway, S. H. (2005a). “ Temporary threshold shift (TTS) in bottlenose dolphins (Tursiops truncatus) exposed to mid-frequency tones,” J. Acoust. Soc. Am. 118, 26962705.
http://dx.doi.org/10.1121/1.2032087
16.
15. Finneran, J. J. , Dear, R. , Carder, D. A. , and Ridgway, S. H. (2003). “ Auditory and behavioral responses of California sea lions (Zalophus californianus) to single underwater impulses from an arc-gap transducer,” J. Acoust. Soc. Am. 114, 16671677.
http://dx.doi.org/10.1121/1.1598194
17.
16. Finneran, J. J. , Houser, D. S. , and Schlundt, C. E. (2007a). “ Objective detection of bottlenose dolphin (Tursiops truncatus) steady-state auditory evoked potentials in response to AM/FM tones,” Aquatic Mammal. 33, 4354.
http://dx.doi.org/10.1578/AM.33.1.2007.43
18.
17. Finneran, J. J. , and Jenkins, A. K. (2012). Criteria and Thresholds for U.S. Navy Acoustic and Explosive Effects Analysis ( SSC Pacific, San Diego, CA).
19.
18. Finneran, J. J. , and Schlundt, C. E. (2007). “ Underwater sound pressure variation and bottlenose dolphin (Tursiops truncatus) hearing thresholds in a small pool,” J. Acoust. Soc. Am. 122, 606614.
http://dx.doi.org/10.1121/1.2743158
20.
19. Finneran, J. J. , and Schlundt, C. E. (2010). “ Frequency-dependent and longitudinal changes in noise-induced hearing loss in a bottlenose dolphin (Tursiops truncatus),” J. Acoust. Soc. Am. 128, 567570.
http://dx.doi.org/10.1121/1.3458814
21.
20. Finneran, J. J. , and Schlundt, C. E. (2011). “ Subjective loudness level measurements and equal loudness contours in a bottlenose dolphin (Tursiops truncatus),” J. Acoust. Soc. Am. 130, 31243136.
http://dx.doi.org/10.1121/1.3641449
22.
21. Finneran, J. J. , and Schlundt, C. E. (2013). “ Effects of fatiguing tone frequency on temporary threshold shift in bottlenose dolphins (Tursiops truncatus),” J. Acoust. Soc. Am. 133, 18191826.
http://dx.doi.org/10.1121/1.4776211
23.
22. Finneran, J. J. , Schlundt, C. E. , Branstetter, B. , and Dear, R. L. (2007b). “ Assessing temporary threshold shift in a bottlenose dolphin (Tursiops truncatus) using multiple simultaneous auditory evoked potentials,” J. Acoust. Soc. Am. 122, 12491264.
http://dx.doi.org/10.1121/1.2749447
24.
23. Finneran, J. J. , Schlundt, C. E. , Branstetter, B. K. , Trickey, J. , Bowman, V. , and Jenkins, K. (2015). “ Effects of multiple impulses from a seismic air gun on bottlenose dolphin hearing and behavior,” J. Acoust. Soc. Am. 137, 16341646.
http://dx.doi.org/10.1121/1.4916591
25.
24. Finneran, J. J. , Schlundt, C. E. , Carder, D. A. , Clark, J. A. , Young, J. A. , Gaspin, J. B. , and Ridgway, S. H. (2000). “ Auditory and behavioral responses of bottlenose dolphins (Tursiops truncatus) and a beluga whale (Delphinapterus leucas) to impulsive sounds resembling distant signatures of underwater explosions,” J. Acoust. Soc. Am. 108, 417431.
http://dx.doi.org/10.1121/1.429475
26.
26. Finneran, J. J. , Schlundt, C. E. , Dear, R. , Carder, D. A. , and Ridgway, S. H. (2002). “ Temporary shift in masked hearing thresholds (MTTS) in odontocetes after exposure to single underwater impulses from a seismic watergun,” J. Acoust. Soc. Am. 111, 29292940.
http://dx.doi.org/10.1121/1.1479150
27.
27. Heffner, H. E. , Koay, G. , and Heffner, R. S. (2008). “ Comparison of behavioral and auditory brainstem response measures of threshold shift in rats exposed to loud sound,” J. Acoust. Soc. Am. 124, 10931104.
http://dx.doi.org/10.1121/1.2949518
28.
28. Henderson, D. , and Hamernik, R. P. (1986). “ Impulse noise: Critical review,” J. Acoust. Soc. Am. 80, 569584.
http://dx.doi.org/10.1121/1.394052
29.
29. Henderson, D. , Hamernik, R. P. , Dosanjh, D. S. , and Mills, J. H. (1976). Effects of Noise on Hearing ( Raven Press, New York).
30.
30. Henderson, D. , Hamernik, R. P. , Salvi, R. J. , and Ahroon, W. A. (1983). “ Comparison of auditory-evoked potentials and behavioral thresholds in the normal and noise-exposed chinchilla,” Audiology 22, 172180.
http://dx.doi.org/10.3109/00206098309072780
31.
31. Humes, L. E. (1980). “ Temporary threshold shift for masked pure tones,” Audiology 19, 335345.
http://dx.doi.org/10.3109/00206098009072674
32.
32. Humes, L. E. , Espinoza-Varas, B. , and Watson, C. S. (1988). “ Modeling sensorineural hearing loss. I. Model and retrospective evaluation,” J. Acoust. Soc. Am. 83, 188202.
http://dx.doi.org/10.1121/1.396420
33.
33. Humes, L. E. , and Jesteadt, W. (1989). “ Models of the additivity of masking,” J. Acoust. Soc. Am. 85, 12851294.
http://dx.doi.org/10.1121/1.397459
34.
34. Humes, L. E. , and Jesteadt, W. (1991). “ Modeling the interactions between noise exposure and other variables,” J. Acoust. Soc. Am. 90, 182188.
http://dx.doi.org/10.1121/1.401286
35.
35. Johnson, C. S. (1967). “ Sound detection thresholds in marine mammals,” in Marine Bioacoustics, edited by W. N. Tavolga ( Pergamon Press, Oxford), pp. 247260.
36.
36. Johnson, C. S. , McManus, M. W. , and Skaar, D. (1989). “ Masked tonal hearing thresholds in the beluga whale,” J. Acoust. Soc. Am. 85, 26512654.
http://dx.doi.org/10.1121/1.397759
37.
37. Kastak, D. , Holt, M. M. , Kastak, C. J. R. , Southall, B. L. , Mulsow, J. , and Schusterman, R. J. (2005a). “ A voluntary mechanism of protection from airborne noise in a harbor seal,” presented at the 16th Biennial Conference on the Biology of Marine Mammals, San Diego, CA (December 12–16, 2005).
38.
38. Kastak, D. , Mulsow, J. , Ghoul, A. , and Reichmuth, C. (2008). “ Noise-induced permanent threshold shift in a harbor seal,” J. Acoust. Soc. Am. 123, 2986(A).
http://dx.doi.org/10.1121/1.2932514
39.
39. Kastak, D. , Reichmuth, C. , Holt, M. M. , Mulsow, J. , Southall, B. L. , and Schusterman, R. J. (2007). “ Onset, growth, and recovery of in-air temporary threshold shift in a California sea lion (Zalophus californianus),” J. Acoust. Soc. Am. 122, 29162924.
http://dx.doi.org/10.1121/1.2783111
40.
40. Kastak, D. , and Schusterman, R. J. (1996). “ Temporary threshold shift in a harbor seal (Phoca vitulina),” J. Acoust. Soc. Am. 100, 19051908.
http://dx.doi.org/10.1121/1.416010
41.
41. Kastak, D. , Schusterman, R. J. , Southall, B. L. , and Reichmuth, C. J. (1999). “ Underwater temporary threshold shift induced by octave-band noise in three species of pinniped,” J. Acoust. Soc. Am. 106, 11421148.
http://dx.doi.org/10.1121/1.427122
42.
42. Kastak, D. , Southall, B. , Holt, M. , Kastak, C. R. , and Schusterman, R. (2004). “ Noise-induced temporary threshold shifts in pinnipeds: Effects of noise energy,” J. Acoust. Soc. Am. 116, 25312532(A).
http://dx.doi.org/10.1121/1.4785103
43.
43. Kastak, D. , Southall, B. L. , Schusterman, R. J. , and Kastak, C. R. (2005b). “ Underwater temporary threshold shift in pinnipeds: Effects of noise level and duration,” J. Acoust. Soc. Am. 118, 31543163.
http://dx.doi.org/10.1121/1.2047128
44.
44. Kastelein, R. (2014). “ Effect of series of 1 to 2 kHz and 6 to 7 kHz up-sweeps and down-sweeps on the behavior of a harbor porpoise (Phocoena phocoena),” Aquatic Mammal. 40, 232242.
http://dx.doi.org/10.1578/AM.40.3.2014.232
45.
45. Kastelein, R. A. , Gransier, R. , and Hoek, L. (2013a). “ Comparative temporary threshold shifts in a harbor porpoise and harbor seal, and severe shift in a seal,” J. Acoust. Soc. Am. 134, 1316.
http://dx.doi.org/10.1121/1.4808078
46.
46. Kastelein, R. A. , Gransier, R. , Hoek, L. , Macleod, A. , and Terhune, J. M. (2012a). “ Hearing threshold shifts and recovery in harbor seals (Phoca vitulina) after octave-band noise exposure at 4 kHz,” J. Acoust. Soc. Am. 132, 27452761.
http://dx.doi.org/10.1121/1.4747013
47.
47. Kastelein, R. A. , Gransier, R. , Hoek, L. , and Olthuis, J. (2012b). “ Temporary threshold shifts and recovery in a harbor porpoise (Phocoena phocoena) after octave-band noise at 4 kHz,” J. Acoust. Soc. Am. 132, 35253537.
http://dx.doi.org/10.1121/1.4757641
48.
48. Kastelein, R. A. , Gransier, R. , Hoek, L. , and Rambags, M. (2013b). “ Hearing frequency thresholds of a harbor porpoise (Phocoena phocoena) temporarily affected by a continuous 1.5 kHz tone,” J. Acoust. Soc. Am. 134, 22862292.
http://dx.doi.org/10.1121/1.4816405
49.
49. Kastelein, R. A. , Gransier, R. , Marijt, M. A. T. , and Hoek, L. (2015a). “ Hearing frequency thresholds of harbor porpoises (Phocoena phocoena) temporarily affected by played back offshore pile driving sounds,” J. Acoust. Soc. Am. 137, 556564.
http://dx.doi.org/10.1121/1.4906261
50.
49. Kastelein, R. A. , Gransier, R. , Schop, J. , and Hoek, L. (2015b). “ Effects of exposure to intermittent and continuous 6–7 kHz sonar sweeps on harbor porpoise (Phocoena phocoena) hearing,” J. Acoust. Soc. Am. 137, 16231633.
http://dx.doi.org/10.1121/1.4916590
51.
50. Kastelein, R. A. , Hoek, L. , Gransier, R. , Rambags, M. , and Claeys, N. (2014a). “ Effect of level, duration, and inter-pulse interval of 1–2 kHz sonar signal exposures on harbor porpoise hearing,” J. Acoust. Soc. Am. 136, 412422.
http://dx.doi.org/10.1121/1.4883596
52.
51. Kastelein, R. A. , Schop, J. , Gransier, R. , and Hoek, L. (2014b). “ Frequency of greatest temporary hearing threshold shift in harbor porpoises (Phocoena phocoena) depends on the noise level,” J. Acoust. Soc. Am. 136, 14101418.
http://dx.doi.org/10.1121/1.4892794
53.
52. Keeler, J. S. (1968). “ Compatible exposure and recovery functions for temporary threshold shift-mechanical and electrical models,” J. Sound Vib. 7, 220235.
http://dx.doi.org/10.1016/0022-460X(68)90269-1
54.
53. Keeler, J. S. (1976). “ Models for noise-induced hearing loss,” in Effects of Noise on Hearing, edited by D. Henderson, R. P. Hamernik, D. S. Dosanjh, and J. H. Mills ( Raven Press, New York), pp. 361381.
55.
54. Kryter, K. D. (1970). The Effects of Noise on Man ( Academic Press, New York).
56.
55. Lemonds, D. W. (1999). “ Auditory filter shapes in an Atlantic bottlenose dolphin (Tursiops truncatus),” Ph.D. thesis, University of Hawaii.
57.
56. Lucke, K. , Siebert, U. , Lepper, P. A. , and Blanchet, M.-A. (2009). “ Temporary shift in masked hearing thresholds in a harbor porpoise (Phocoena phocoena) after exposure to seismic airgun stimuli,” J. Acoust. Soc. Am. 125, 40604070.
http://dx.doi.org/10.1121/1.3117443
58.
57. Luz, G. A. , and Hodge, D. C. (1971). “ Recovery from impulse-noise induced TTS in monkeys and men: A descriptive model,” J. Acoust. Soc. Am. 49, 17701777.
http://dx.doi.org/10.1121/1.1912580
59.
58. Macrae, J. H. (1993). “ Temporary threshold shift caused by hearing aid use,” J. Speech Hear. Res. 36, 365372.
http://dx.doi.org/10.1044/jshr.3602.365
60.
59. Macrae, J. H. (1994). “ An investigation of temporary threshold shift caused by hearing aid use,” J. Speech Hear. Res. 37, 227237.
http://dx.doi.org/10.1044/jshr.3701.227
61.
61. Maslen, K. R. (1981). “ Towards a better understanding of temporary threshold shift of hearing,” Appl. Acoust. 14, 281318.
http://dx.doi.org/10.1016/0003-682X(81)90023-2
62.
62. McFadden, D. (1986). “ The curious half-octave shift: Evidence for a basalward migration of the traveling-wave envelope with increasing intensity,” in Basic and Applied Aspects of Noise-induced Hearing Loss, edited by R. J. Salvi, D. Henderson, R. P. Hamernik, and V. Coletti ( Plenum Press, New York), pp. 295312.
63.
63. Melnick, W. (1991). “ Human temporary threshold shift (TTS) and damage risk,” J. Acoust. Soc. Am. 90, 147154.
http://dx.doi.org/10.1121/1.401308
64.
64. Mills, J. H. (1976). “ Threshold shifts produced by a 90-day exposure to noise,” in Effects of Noise on Hearing, edited by D. Henderson, R. P. Hamernik, D. S. Dosanjh, and J. H. Mills ( Raven Press, New York), pp. 265275.
65.
65. Mills, J. H. , Gilbert, R. M. , and Adkins, W. Y. (1979). “ Temporary threshold shifts in humans exposed to octave bands of noise for 16 to 24 hours,” J. Acoust. Soc. Am. 65, 12381248.
http://dx.doi.org/10.1121/1.382791
66.
66. Mooney, T. A. , Nachtigall, P. E. , Breese, M. , Vlachos, S. , and Au, W. W. L. (2009b). “ Predicting temporary threshold shifts in a bottlenose dolphin (Tursiops truncatus): The effects of noise level and duration,” J. Acoust. Soc. Am. 125, 18161826.
http://dx.doi.org/10.1121/1.3068456
67.
67. Mooney, T. A. , Nachtigall, P. E. , and Vlachos, S. (2009a). “ Sonar-induced temporary hearing loss in dolphins,” Biol. Lett. 5, 565567.
http://dx.doi.org/10.1098/rsbl.2009.0099
68.
68. Mulsow, J. , Schlundt, C. E. , Brandt, L. , and Finneran, J. J. (2015). “ Equal latency contours for bottlenose dolphins (Tursiops truncatus) and California sea lions (Zalophus californianus),” J. Acoust. Soc. Am. (in press).
69.
69. Mulsow, J. L. , Finneran, J. J. , and Houser, D. S. (2011). “ California sea lion (Zalophus californianus) aerial hearing sensitivity measured using auditory steady-state response and psychophysical methods,” J. Acoust. Soc. Am. 129, 22982306.
http://dx.doi.org/10.1121/1.3552882
70.
70. Nachtigall, P. E. , Pawloski, J. , and Au, W. W. L. (2003). “ Temporary threshold shifts and recovery following noise exposure in the Atlantic bottlenosed dolphin (Tursiops truncatus),” J. Acoust. Soc. Am. 113, 34253429.
http://dx.doi.org/10.1121/1.1570438
71.
71. Nachtigall, P. E. , Supin, A. Y. , Pawloski, J. , and Au, W. W. L. (2004). “ Temporary threshold shifts after noise exposure in the bottlenose dolphin (Tursiops truncatus) measured using evoked auditory potentials,” Mar. Mammal Sci. 20, 673687.
http://dx.doi.org/10.1111/j.1748-7692.2004.tb01187.x
72.
73. Nedwell, J. R. , Turnpenny, A. W. H. , Lovell, J. , Parvin, S. J. , Workman, R. , Spinks, J. A. L. , and Howell, D. (2007). “ A validation of the dBht as a measure of the behavioural and auditory effects of underwater noise,” 534R1231 (Subacoustech Acoustic Research Consultancy).
73.
74.OriginLab (2010). “ Origin (Version 8.1) [computer software]” (OriginLab Corporation, Northampton, MA).
74.
75. Parker, D. E. , Tubbs, R. L. , Johnston, P. A. , and Johnston, L. S. (1976). “ Influence of auditory fatigue on masked pure-tone thresholds,” J. Acoust. Soc. Am. 60, 881885.
http://dx.doi.org/10.1121/1.381168
75.
76. Patuzzi, R. (1998). “ Exponential onset and recovery of temporary threshold shift after loud sound: Evidence for long-term inactivation of mechano-electrical transduction channels,” Hear Res 125, 1738.
http://dx.doi.org/10.1016/S0378-5955(98)00126-9
76.
77. Picton, T. W. , John, M. S. , Dimitrijevic, A. , and Purcell, D. (2003). “ Human auditory steady-state responses,” Int. J. Audiol. 42, 177219.
http://dx.doi.org/10.3109/14992020309101316
77.
78. Popov, V. V. , Klishin, V. O. , Nechaev, D. I. , Pletenko, M. G. , Rozhnov, V. V. , Supin, A. Y. , Sysueva, E. V. , and Tarakanov, M. B. (2011b). “ Influence of acoustic noises on the white whale hearing thresholds,” Dokl. Biol. Sci. 440, 332334.
http://dx.doi.org/10.1134/S001249661105019X
78.
78. Popov, V. V. , Nechaev, D. I. , Sysueva, E. V. , Rozhnov, V. V. , and Supin, A. Y. (2015). “ Spectrum pattern resolution after noise exposure in a beluga whale, Delphinapterus leucas: Evoked potential study,” J. Acoust. Soc. Am. 138, 377388.
http://dx.doi.org/10.1121/1.4923157
79.
79. Popov, V. V. , Supin, A. Y. , Rozhnov, V. V. , Nechaev, D. I. , and Sysueva, E. V. (2014). “ The limits of applicability of the sound exposure level (SEL) metric to temporal threshold shifts (TTS) in beluga whales, Delphinapterus leucas,” J. Exp. Biol. 217, 18041810.
http://dx.doi.org/10.1242/jeb.098814
80.
80. Popov, V. V. , Supin, A. Y. , Rozhnov, V. V. , Nechaev, D. I. , Sysuyeva, E. V. , Klishin, V. O. , Pletenko, M. G. , and Tarakanov, M. B. (2013). “ Hearing threshold shifts and recovery after noise exposure in beluga whales Delphinapterus leucas,” J. Exp. Biol. 216, 15871596.
http://dx.doi.org/10.1242/jeb.078345
81.
81. Popov, V. V. , Supin, A. Y. , Wang, D. , Wang, K. , Dong, L. , and Wang, S. (2011a). “ Noise-induced temporary threshold shift and recovery in Yangtze finless porpoises Neophocaena phocaenoides asiaeorientalis,” J. Acoust. Soc. Am. 130, 574584.
http://dx.doi.org/10.1121/1.3596470
82.
82. Ridgway, S. H. , Carder, D. A. , Kamolnick, T. , Smith, R. R. , Schlundt, C. E. , and Elsberry, W. R. (2001). “ Hearing and whistling in the deep sea: Depth influences whistle spectra but does not attenuate hearing by white whales (Delphinapterus leucas) (Odontoceti, Cetacea),” J. Exp. Biol. 204, 38293841.
83.
83. Ridgway, S. H. , Carder, D. A. , Smith, R. R. , Kamolnick, T. , Schlundt, C. E. , and Elsberry, W. R. (1997). “ Behavioral responses and temporary shift in masked hearing thresholds of bottlenose dolphins, Tursiops truncatus, to 1-second tones of 141–201 dB re 1 μPa,” Technical Report 1751 (Naval Command, Control, and Ocean Surveillance Center, RDT&E Division, San Diego, CA).
84.
84. Schlundt, C. E. , Dear, R. L. , Green, L. , Houser, D. S. , and Finneran, J. J. (2007). “ Simultaneously measured behavioral and electrophysiological hearing thresholds in a bottlenose dolphin (Tursiops truncatus),” J. Acoust. Soc. Am. 122, 615622.
http://dx.doi.org/10.1121/1.2737982
85.
85. Schlundt, C. E. , Finneran, J. J. , Carder, D. A. , and Ridgway, S. H. (2000). “ Temporary shift in masked hearing thresholds of bottlenose dolphins, Tursiops truncatus, and white whales, Delphinapterus leucas, after exposure to intense tones,” J. Acoust. Soc. Am. 107, 34963508.
http://dx.doi.org/10.1121/1.429420
86.
86. Schmiedt, R. A. (1984). “ Acoustic injury and the physiology of hearing,” J. Acoust. Soc. Am. 76, 12931317.
http://dx.doi.org/10.1121/1.391446
87.
87. Southall, B. L. , Bowles, A. E. , Ellison, W. T. , Finneran, J. J. , Gentry, R. L. , Greene, C. R. , Jr., Kastak, D. , Ketten, D. R. , Miller, J. H. , Nachtigall, P. E. , Richardson, W. J. , Thomas, J. A. , and Tyack, P. L. (2007). “ Marine mammal noise exposure criteria: Initial scientific recommendations,” Aquatic Mammal. 33, 411521.
http://dx.doi.org/10.1578/AM.33.4.2007.411
88.
88. Suzuki, Y. , and Takeshima, H. (2004). “ Equal-loudness-level contours for pure tones,” J. Acoust. Soc. Am. 116, 918933.
http://dx.doi.org/10.1121/1.1763601
89.
90. Tyack, P. L. , and Clark, C. W. (2000). “ Communication and acoustic behavior of dolphins and whales,” in Hearing by Whales and Dolphins, edited by W. W. L. Au, A. N. Popper, and R. R. Fay ( Springer, New York), pp. 156224.
90.
91. Ward, W. D. (1976). “ A comparison of the effects of continuous, intermittent, and impulse noise,” in Effects of Noise on Hearing, edited by D. Henderson, R. P. Hamernik, D. S. Dosanjh, and J. H. Mills ( Raven Press, New York), pp. 407420.
91.
92. Ward, W. D. (1997). “ Effects of high-intensity sound,” in Encyclopedia of Acoustics, edited by M. J. Crocker ( Wiley, New York, NY), pp. 14971507.
92.
93. Ward, W. D. , Cushing, E. M. , and Burns, E. M. (1976). “ Effective quiet and moderate TTS: Implications for noise exposure standards,” J. Acoust. Soc. Am. 59, 160165.
http://dx.doi.org/10.1121/1.380835
93.
94. Ward, W. D. , Glorig, A. , and Sklar, D. L. (1959). “ Temporary threshold shift produced by intermittent exposure to noise,” J. Acoust. Soc. Am. 31, 791794.
http://dx.doi.org/10.1121/1.1907787
94.
95. Wensveen, P. J. , Huijser, L. A. E. , Hoek, L. , and Kastelein, R. A. (2014). “ Equal latency contours and auditory weighting functions for the harbour porpoise (Phocoena phocoena),” J. Exp. Biol. 217, 359369.
http://dx.doi.org/10.1242/jeb.091983
95.
96. White, M. J. , Norris, J. , Ljungblad, D. K. , Baron, K. , and di Sciara, G. N. (1978). “ Auditory thresholds of two beluga whales (Delphinapterus leucas)” (Hubbs Sea World Research Institute, San Diego).
96.
97. Yuen, M. M. L. , Nachtigall, P. E. , Breese, M. , and Supin, A. Y. (2005). “ Behavioral and auditory evoked potential audiograms of a false killer whale (Pseudorca crassidens),” J. Acoust. Soc. Am. 118, 26882695.
http://dx.doi.org/10.1121/1.2010350
http://aip.metastore.ingenta.com/content/asa/journal/jasa/138/3/10.1121/1.4927418
Loading
/content/asa/journal/jasa/138/3/10.1121/1.4927418
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/asa/journal/jasa/138/3/10.1121/1.4927418
2015-09-30
2016-12-05

Abstract

One of the most widely recognized effects of intense noise exposure is a noise-induced threshold shift—an elevation of hearing thresholds following cessation of the noise. Over the past twenty years, as concerns over the potential effects of human-generated noise on marine mammals have increased, a number of studies have been conducted to investigate noise-induced threshold shift phenomena in marine mammals. The experiments have focused on measuring temporary threshold shift (TTS)—a noise-induced threshold shift that fully recovers over time—in marine mammals exposed to intense tones, band-limited noise, and underwater impulses with various sound pressure levels, frequencies, durations, and temporal patterns. In this review, the methods employed by the groups conducting marine mammal TTS experiments are described and the relationships between the experimental conditions, the noise exposure parameters, and the observed TTS are summarized. An attempt has been made to synthesize the major findings across experiments to provide the current state of knowledge for the effects of noise on marine mammal hearing.

Loading

Full text loading...

/deliver/fulltext/asa/journal/jasa/138/3/1.4927418.html;jsessionid=eVgT6x5fo09VCBo8JoqMZHlo.x-aip-live-06?itemId=/content/asa/journal/jasa/138/3/10.1121/1.4927418&mimeType=html&fmt=ahah&containerItemId=content/asa/journal/jasa
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=asadl.org/jasa/138/3/10.1121/1.4927418&pageURL=http://scitation.aip.org/content/asa/journal/jasa/138/3/10.1121/1.4927418'
Right1,Right2,Right3,