Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/asa/journal/jasa/138/3/10.1121/1.4928396
1.
1. D. Gabor, “ Light and information,” in Progress in Optics, edited by E. Wolf ( North Holland, Amsterdam, 1961), Vol. 1, pp. 109153.
2.
2. J. D. Maynard, E. G. Williams, and Y. Lee, “ Nearfield acoustic holography: I. Theory of generalized holography and the development of NAH,” J. Acoust. Soc. Am. 78(4), 13951413 (1985).
http://dx.doi.org/10.1121/1.392911
3.
3. E. G. Williams, Fourier Acoustics: Sound Radiation and Nearfield Acoustical Holography ( Academic, San Diego, CA, 1999), Chaps. 3, 5, 7.
4.
4. P. R. Stepanishen and K. C. Benjamin, “ Forward and backward projection of acoustic fields using FFT methods,” J. Acoust. Soc. Am. 71(4), 803812 (1982).
http://dx.doi.org/10.1121/1.387606
5.
5. M. E. Schafer and P. A. Lewin, “ Transducer characterization using the angular spectrum method,” J. Acoust. Soc. Am. 85(5), 22022214 (1989).
http://dx.doi.org/10.1121/1.397869
6.
6. R. Reibold and F. Holzer, “ Complete mapping of ultrasonic fields from optically measured data in a single cross-section,” Acustica 58, 1116 (1985).
7.
7. G. T. Clement, R. Liu, S. V. Letcher, and P. R. Stepanishen, “ Forward projection of transient signals obtained from a fiber-optic pressure sensor,” J. Acoust. Soc. Am. 104(3), 12661273 (1998).
http://dx.doi.org/10.1121/1.424335
8.
8. G. T. Clement and K. Hynynen, “ Field characterization of therapeutic ultrasound phased arrays through forward and backward planar projection,” J. Acoust. Soc. Am. 108(1), 441446 (2000).
http://dx.doi.org/10.1121/1.429477
9.
9. S. F. Wu, “ Techniques for implementing near-field acoustical holography,” Sound Vib. 44(2), 1216 (2010).
10.
10. O. A. Sapozhnikov, Y. A. Pishchal'nikov, and A. V. Morozov, “ Reconstruction of the normal velocity distribution on the surface of an ultrasonic transducer from the acoustic pressure measured on a reference surface,” Acoust. Phys. 49(3), 354360 (2003).
http://dx.doi.org/10.1134/1.1574364
11.
11. O. A. Sapozhnikov, A. E. Ponomarev, and M. A. Smagin, “ Transient acoustic holography for reconstructing the particle velocity of the surface of an acoustic transducer,” Acoust. Phys. 52(3), 324330 (2006).
http://dx.doi.org/10.1134/S1063771006030134
12.
12. J. R. Shewell and E. Wolf, “ Inverse diffraction and a new reciprocity theorem,” J. Opt. Soc. Am. 58(12), 15961603 (1968).
http://dx.doi.org/10.1364/JOSA. 58.001596
13.
13. C. J. Bouwkamp, “ Diffraction theory,” Rep. Prog. Phys. 17, 35100 (1954).
http://dx.doi.org/10.1088/0034-4885/17/1/302
14.
14. F. Coulouvrat, “ Continuous field radiated by a geometrically focused transducer—numerical investigation and comparison with an approximate model,” J. Acoust. Soc. Am. 94(3), 16631675 (1993).
http://dx.doi.org/10.1121/1.408139
15.
15. D. Cathignol, O. A. Sapozhnikov, and J. Zhang, “ Lamb waves in piezoelectric focused radiator as a reason for discrepancy between O'Neil's formula and experiment,” J. Acoust. Soc. Am. 101(3), 12861297 (1997).
http://dx.doi.org/10.1121/1.418102
16.
16. D. Cathignol, O. A. Sapozhnikov, and Y. Theillere, “ Comparison of acoustic fields radiated from piezoceramic and piezocomposite focused radiators,” J. Acoust. Soc. Am. 105(5), 26122617 (1999).
http://dx.doi.org/10.1121/1.426877
17.
17. D. Cathignol and O. A. Sapozhnikov, “ On the application of the Rayleigh integral to the calculation of the field of a concave focusing radiator,” Acoust. Phys. 45(6), 735742 (1999).
18.
18. O. A. Sapozhnikov and T. V. Sinilo, “ Acoustic field produced by a concave radiating surface with allowance for the diffraction,” Acoust. Phys. 48(6), 720727 (2002).
http://dx.doi.org/10.1134/1.1522040
19.
19.AIUM/NEMA UD 2-2004, “ Acoustic output measurement standard for diagnostic ultrasound equipment,” revision 3 (National Electrical Manufacturers Association, Rosslyn, VA, 2009).
20.
20.IEC/TS62556, “ Ultrasonics—field characterization—specification and measurement of field parameters for high intensity therapeutic ultrasound (HITU) transducers and systems” (International Electrotechnical Commission, Geneva, Switzerland, 2014), ed. 1.0.
21.
21. B. Zeqiri and M. Hodnett, “ Measurements, phantoms, and standardization,” Proc. Inst. Mech. Eng. Part H-J. Eng. Med. 224(H2, SI), 375391 (2010).
http://dx.doi.org/10.1243/09544119JEIM647
22.
22. G. R. Harris, “ Progress in medical ultrasound exposimetry,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(5), 717736 (2005).
http://dx.doi.org/10.1109/TUFFC.2005.1503960
23.
23. G. Harris, “ FDA regulation of clinical high intensity focused ultrasound (HIFU) devices,” in Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE, edited by G. Worrell, X. Pan, Y. Kim, and B. He ( Institute of Electrical and Electronics Engineers, Piscataway, NJ, 2009), pp. 145148.
24.
24. O. V. Bessonova, V. A. Khokhlova, M. S. Canney, M. R. Bailey, and L. A. Crum, “ A derating method for therapeutic applications of high intensity focused ultrasound,” Acoust. Phys. 56(3), 354363 (2010).
http://dx.doi.org/10.1134/S1063771010030140
25.
25. S. A. R. Dibaji, R. K. Banerjee, J. E. Soneson, and M. R. Myers, “ Nonlinear derating of high-intensity focused ultrasound beams using Gaussian modal sums,” J. Acoust. Soc. Am. 134(5), 34353445 (2013).
http://dx.doi.org/10.1121/1.4824336
26.
26. M. S. Canney, M. R. Bailey, L. A. Crum, V. A. Khokhlova, and O. A. Sapozhnikov, “ Acoustic characterization of high intensity focused ultrasound fields: A combined measurement and modeling approach,” J. Acoust. Soc. Am. 124(4), 24062420 (2008).
http://dx.doi.org/10.1121/1.2967836
27.
27. P. V. Yuldashev and V. A. Khokhlova, “ Simulation of three-dimensional nonlinear fields of ultrasound therapeutic arrays,” Acoust. Phys. 57(3), 334343 (2011).
http://dx.doi.org/10.1134/S1063771011030213
28.
28. W. Kreider, P. V. Yuldashev, O. A. Sapozhnikov, N. Farr, A. Partanen, M. R. Bailey, and V. A. Khokhlova, “ Characterization of a multi-element clinical hifu system using acoustic holography and nonlinear modeling,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(8), 16831698 (2013).
http://dx.doi.org/10.1109/TUFFC. 2013.2750
29.
29. T. D. Mast, L. P. Souriau, D.-L. D. Liu, M. Tabei, A. I. Nachman, and R. C. Waag, “ A k-space method for large-scale models of wave propagation in tissue,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48(2), 341354 (2001).
http://dx.doi.org/10.1109/58.911717
30.
30. R. J. Zemp, J. Tavakkoli, and R. S. Cobbold, “ Modeling of nonlinear ultrasound propagation in tissue from array transducers,” J. Acoust. Soc. Am. 113(1), 139152 (2003).
http://dx.doi.org/10.1121/1.1528926
31.
31. B. E. Treeby, J. Jaros, A. P. Rendell, and B. T. Cox, “ Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudospectral method,” J. Acoust. Soc. Am. 131(6), 43244336 (2012).
http://dx.doi.org/10.1121/1.4712021
32.
32. P. V. Yuldashev, S. M. Shmeleva, S. A. Ilyin, O. A. Sapozhnikov, L. R. Gavrilov, and V. A. Khokhlova, “ The role of acoustic nonlinearity in tissue heating behind a rib cage using a high-intensity focused ultrasound phased array,” Phys. Med. Biol. 58(8), 25372559 (2013).
http://dx.doi.org/10.1088/0031-9155/58/8/2537
33.
33. A. D. Pierce, Acoustics: An Introduction to its Physical Principles and Applications ( Acoustical Society of America, New York, 1994), pp. 2425.
34.
34. C. J. Bouwkamp, “ A contribution to the theory of acoustic radiation,” Philips Res. Rep. 1(4), 251277 (1946).
35.
35. N. Bilaniuk and G. S. K. Wong, “ Speed of sound in pure water as a function of temperature,” J. Acoust. Soc. Am. 93(3), 16091612 (1993).
http://dx.doi.org/10.1121/1.406819
36.
36. N. Bilaniuk and G. S. K. Wong, “ Erratum: Speed of sound in pure water as a function of temperature,” J. Acoust. Soc. Am. 99(5), 3257 (1996).
http://dx.doi.org/10.1121/1.415224
37.
37. W. Wagner and A. Pruß, “ The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use,” J. Phys. Chem. Ref. Data 31(2), 387535 (1999).
http://dx.doi.org/10.1063/1.1461829
38.
38. E. Oberg, F. D. Jones, H. L. Horton, and H. H. Ryffel, Machinery's Handbook, 26th ed. ( Industrial Press, New York, 2000), pp. 17161739, 1900.
39.
39. G. C. Sherman, “ Application of the convolution theorem to Rayleigh's integral formulas,” J. Opt. Soc. Am. 57(4), 546547 (1967).
http://dx.doi.org/10.1364/JOSA.57.000546
40.
40. M. Born and E. Wolf, Principles of Optics, 7th ed. ( Cambridge University Press, New York, 1999), pp. 633672.
41.
41. A. O. Williams, “ Acoustic intensity distribution from a “piston” source: II. The concave piston,” J. Acoust. Soc. Am. 17(3), 219227 (1946).
http://dx.doi.org/10.1121/1.1916318
42.
42. H. T. O'Neil, “ Theory of focusing radiators,” J. Acoust. Soc. Am. 21(5), 516526 (1949).
http://dx.doi.org/10.1121/1.1906542
43.
43. A. Yariv, “ Phase conjugate optics and real-time holography,” IEEE J. Quantum Electron 14(9), 650660 (1978).
http://dx.doi.org/10.1109/JQE.1978.1069870
http://aip.metastore.ingenta.com/content/asa/journal/jasa/138/3/10.1121/1.4928396
Loading
/content/asa/journal/jasa/138/3/10.1121/1.4928396
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/asa/journal/jasa/138/3/10.1121/1.4928396
2015-09-16
2016-09-27

Abstract

Acoustic holography is a powerful technique for characterizing ultrasound sources and the fields they radiate, with the ability to quantify source vibrations and reduce the number of required measurements. These capabilities are increasingly appealing for meeting measurement standards in medical ultrasound; however, associated uncertainties have not been investigated systematically. Here errors associated with holographic representations of a linear, continuous-wave ultrasound field are studied. To facilitate the analysis, error metrics are defined explicitly, and a detailed description of a holography formulation based on the Rayleigh integral is provided. Errors are evaluated both for simulations of a typical therapeutic ultrasound source and for physical experiments with three different ultrasound sources. Simulated experiments explore sampling errors introduced by the use of a finite number of measurements, geometric uncertainties in the actual positions of acquired measurements, and uncertainties in the properties of the propagation medium. Results demonstrate the theoretical feasibility of keeping errors less than about 1%. Typical errors in physical experiments were somewhat larger, on the order of a few percent; comparison with simulations provides specific guidelines for improving the experimental implementation to reduce these errors. Overall, results suggest that holography can be implemented successfully as a metrological tool with small, quantifiable errors.

Loading

Full text loading...

/deliver/fulltext/asa/journal/jasa/138/3/1.4928396.html;jsessionid=12UqkD662Bw5dIBFCSkDP7Of.x-aip-live-02?itemId=/content/asa/journal/jasa/138/3/10.1121/1.4928396&mimeType=html&fmt=ahah&containerItemId=content/asa/journal/jasa
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=asadl.org/jasa/138/3/10.1121/1.4928396&pageURL=http://scitation.aip.org/content/asa/journal/jasa/138/3/10.1121/1.4928396'
Right1,Right2,Right3,