Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/asa/journal/jasa/138/3/10.1121/1.4929928
1.
1. M. B. Muhlestein, K. L. Gee, and J. H. Macedone, “ Educational demonstration of a spherically propagating acoustic shock,” J. Acoust. Soc. Am. 131, 24222430 (2012).
http://dx.doi.org/10.1121/1.3676730
2.
2. D. T. Blackstock, “ Propagation of a weak shock followed by a tail of arbitrary waveform,” in Proceedings of the 11th International Congress on Acoustics, Paris, France (1983), Vol. 1, pp. 305308.
3.
3. G. F. Kinney and K. J. Graham, Explosive Shocks in Air ( Springer, Berlin, 1985), pp. 50136.
4.
4. W. E. Baker, Explosions in Air ( University of Texas Press, Austin, TX, 1973), pp. 177, 118–163.
5.
5.ANSI S2.20-1983: American National Standard for Estimating Airblast Characteristics for Single Point Explosions in Air ( Acoustical Society of America, Melville, NY, 2006).
6.
6. P. Rogers, “ Weak-shock solution for underwater explosive shock waves,” J. Acoust. Soc. Am. 62, 14121419 (1977).
http://dx.doi.org/10.1121/1.381674
7.
7. W. M. Wright, “ Propagation in air of N waves produced by sparks,” J. Acoust. Soc. Am. 73, 19481955 (1983).
http://dx.doi.org/10.1121/1.389585
8.
8. M. D. Shaw and K. L. Gee, “ Acoustical analysis of an indoor test facility for a 30-mm Gatling gun,” Noise Control Eng. J. 58, 611620 (2010).
http://dx.doi.org/10.3397/1.3495736
9.
9. R. D. Ford, D. J. Saunders, and G. Kerry, “ The acoustic pressure waveform from small unconfined charges of plastic explosive,” J. Acoust. Soc. Am. 94, 408417 (1993).
http://dx.doi.org/10.1121/1.407052
10.
10. A. Loubeau, V. W. Sparrow, L. L. Pater, and W. M. Wright, “ High frequency measurements of blast wave propagation,” J. Acoust. Soc. Am. 120, EL29EL35 (2006).
http://dx.doi.org/10.1121/1.2234518
11.
11. H. E. Bass, B. A. Layton, L. N. Bolen, and R. Raspet, “ Propagation of medium strength shock waves through the atmosphere,” J. Acoust. Soc. Am. 82, 306310 (1987).
http://dx.doi.org/10.1121/1.395567
12.
12. R. Stoughton, “ Measurements of small caliber ballistic shock waves in air,” J. Acoust. Soc. Am. 102, 781787 (1997).
http://dx.doi.org/10.1121/1.419904
13.
13. K. L. Gee, J. A. Vernon, and J. H. Macedone, “ Auditory risk of exploding hydrogen–oxygen balloons,” J. Chem. Ed. 87, 10391044 (2010).
http://dx.doi.org/10.1021/ed100439h
14.
14. J. A. Vernon, K. L. Gee, and J. H. Macedone, “ Acoustical characterization of exploding hydrogen-oxygen balloons,” J. Acoust. Soc. Am. 131, EL243EL249 (2012).
http://dx.doi.org/10.1121/1.3684741
15.
15. A. T. Wall, K. L. Gee, M. M. James, K. A. Bradley, S. A. McInerny, and T. B. Neilsen, “ Near-field noise measurements of a high-performance military jet aircraft,” Noise Control Eng. J. 60, 421434 (2012).
http://dx.doi.org/10.3397/1.3701021
16.
16. K. L. Gee, J. H. Giraud, J. D. Blotter, and S. D. Sommerfeldt, “ Near-field acoustic intensity measurements of a small solid rocket motor,” J. Acoust. Soc. Am. 128, EL69EL74 (2010).
http://dx.doi.org/10.1121/1.3436491
17.
17. G. Ben-Dor, Shock Wave Reflection Phenomena, 2nd ed. ( Springer, Berlin, 2007), pp. 138, 247–306.
18.
18. T. B. Gabrielson, T. M. Marston, and A. A. Atchley, “ Nonlinear propagation modeling: Guidelines for supporting measurements,” Proc. Noise-Con 114, 275285 (2005).
19.
19. D. K. Wilson, “ The sound-speed gradient and refraction in the near ground atmosphere,” J. Acoust. Soc. Am. 113, 750757 (2003).
http://dx.doi.org/10.1121/1.1532028
20.
20. D. J. Maglieri and K. J. Plotkin, “ Sonic Boom,” in Noise Sources, Vol. 1 of Aeroacoustics of Flight Vehicles: Theory and Practice, edited by H. H. Hubbard ( Acoustical Society of America, Woodbury, NY, 1995), Chap. 10, pp. 523525.
21.
21. F. M. Pestorius and S. B. Williams, “ Upper limit on the use of weak-shock theory,” J. Acoust. Soc. Am. 55, 13341335 (1974).
http://dx.doi.org/10.1121/1.1914705
http://aip.metastore.ingenta.com/content/asa/journal/jasa/138/3/10.1121/1.4929928
Loading
/content/asa/journal/jasa/138/3/10.1121/1.4929928
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/asa/journal/jasa/138/3/10.1121/1.4929928
2015-09-18
2016-09-28

Abstract

Prior anechoic measurements of a small acetylene-oxygen balloon explosion were used to study spherical weak-shock decay over short ranges [Muhlestein , J. Acoust. Soc. Am. , 2422–2430 (2012)]. Here, longer-range measurements conducted at the Bonneville Salt Flats with a larger balloon are described. Waveform and spectral characteristics and comparisons of the peak pressure decay with an analytical weak-shock model are presented. Weak shocks persist to at least 305 m, with an amplitude decay that is predicted reasonably well using the model. Deviations are discussed in the context of atmospheric effects and nonlinear ground reflections.

Loading

Full text loading...

/deliver/fulltext/asa/journal/jasa/138/3/1.4929928.html;jsessionid=QFeOBuzcldxgH2WgXw8HrcqY.x-aip-live-06?itemId=/content/asa/journal/jasa/138/3/10.1121/1.4929928&mimeType=html&fmt=ahah&containerItemId=content/asa/journal/jasa
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=asadl.org/jasa/138/3/10.1121/1.4929928&pageURL=http://scitation.aip.org/content/asa/journal/jasa/138/3/10.1121/1.4929928'
Right1,Right2,Right3,