Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/asa/journal/jasa/138/4/10.1121/1.4931831
1.
1. M. E. dos Santos, M. N. Couchinho, A. R. Luis, and E. J. Goncalves, “Monitoring underwater explosions in the habitat of resident bottlenose dolphins,” J. Acoust. Soc. Am. 128, 38053808 (2010).
http://dx.doi.org/10.1121/1.3506378
2.
2. D. Rauch, “Seismic interface waves in coastal waters: A review,” report, SACLANTCEN, La-Spezia, Italy (1980).
3.
3. F. Gassmann, “Elastic waves through a packing of spheres,” Geophysics 16, 673685 (1951).
http://dx.doi.org/10.1190/1.1437718
4.
4. O. A. Godin and D. M. Chapman, “Dispersion of interface waves in sediments with power-law shear speed profiles. I. Exact and approximate analytical results,” J. Acoust. Soc. Am. 110, 18901907 (2001).
http://dx.doi.org/10.1121/1.1401776
5.
5. A. D. Pierce and W. M. Carey, “Shear wave speed increases with depth to the one-sixth power in sandy-silty marine sediments,” Proc. Meet. Acoust. 4, 070006 (2008).
http://dx.doi.org/10.1121/1.3089721
6.
6. D. R. Jackson and M. D. Richardson, High-Frequency Seafloor Acoustics ( Springer, New York, 2007).
7.
7. A. G. Soloway and P. H. Dahl, “Peak sound pressure and sound exposure level from underwater explosions in shallow water,” J. Acoust. Soc. Am. 136, EL218EL223 (2014).
http://dx.doi.org/10.1121/1.4892668
8.
8. N. R. Chapman, “Measurement of the waveform parameters of shallow explosive charges,” J. Acoust. Soc. Am. 78, 672681 (1985).
http://dx.doi.org/10.1121/1.392436
9.
9. N. R. Chapman, “Source levels of shallow explosive charges,” J. Acoust. Soc. Am. 84, 697702 (1988).
http://dx.doi.org/10.1121/1.396849
10.
10. J. Ewing, J. A. Carter, G. H. Sutton, and N. Barstow, “Shallow water sediment properties derived from high-frequency shear and interface waves,” J. Geophys. Res. Solid Earth. 97, 47394762 (1992).
http://dx.doi.org/10.1029/92JB00180
11.
11. G. Nolet and L. M. Dorman, “Waveform analysis of Scholte modes in ocean sediment layers,” Geophys. J. Int. 125, 385396 (1996).
http://dx.doi.org/10.1111/j.1365-246X.1996.tb00006.x
12.
12. C. S. Hardaway, C. H. Hobbs III, and D. A. Milligan, “Investigations of offshore beach sands: Virginia Beach and Sandbridge, Virginia,” report, Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, VA (1995).
13.
13. J. A. Collins, G. H. Sutton, and J. I. Ewing, “Shear-wave velocity structure of shallow-water sediments in the East China Sea,” J. Acoust. Soc. Am. 100, 36463654 (1996).
http://dx.doi.org/10.1121/1.417227
14.
14. D. M. F. Chapman and O. A. Godin, “Dispersion of interface waves in sediments with power-law shear speed profiles. II. Experimental observations and seismo-acoustic inversions,” J. Acoust. Soc. Am. 110, 19081916 (2001).
http://dx.doi.org/10.1121/1.1401739
15.
15. P. Bergamo, L. Bodet, L. V. Socco, R. Mourgues, and V. Tournat, “Physical modeling of a surface-wave survey over a laterally varying granular medium with property contrasts and velocity gradients,” Geophys. J. Int. 197, 233247 (2014).
http://dx.doi.org/10.1093/gji/ggt521
16.
16. Henrik Schmidt, Ocean Acoustics and Seismic Exploration Synthesis (OASES) ( Department of Ocean Engineering, Massachusetts Institute of Technology, Cambridge, 2011).
17.
17. K. Ohta, S. Matsumoto, K. Okabe, K. Asano, and Y. Kanamori, “Estimation of shear wave speed in ocean-bottom sediment using electromagnetic induction source,” IEEE J. Ocean. Eng. 33, 233239 (2008).
http://dx.doi.org/10.1109/JOE.2008.926108
http://aip.metastore.ingenta.com/content/asa/journal/jasa/138/4/10.1121/1.4931831
Loading
/content/asa/journal/jasa/138/4/10.1121/1.4931831
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/asa/journal/jasa/138/4/10.1121/1.4931831
2015-10-09
2016-09-26

Abstract

Experimental measurements of Scholte waves from underwater explosions collected off the coast of Virginia Beach, VA in shallow water are presented. It is shown here that the dispersion of these explosion-generated Scholte waves traveling in the sandy seabed can be modeled using a power-law dependent shear wave speed profile and an empirical source model that determines the pressure time-series at 1 m from the source as a function of TNT-equivalent charge weight.

Loading

Full text loading...

/deliver/fulltext/asa/journal/jasa/138/4/1.4931831.html;jsessionid=sKH6H-vpBKLZi3XC27dnjbup.x-aip-live-03?itemId=/content/asa/journal/jasa/138/4/10.1121/1.4931831&mimeType=html&fmt=ahah&containerItemId=content/asa/journal/jasa
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=asadl.org/jasa/138/4/10.1121/1.4931831&pageURL=http://scitation.aip.org/content/asa/journal/jasa/138/4/10.1121/1.4931831'
Right1,Right2,Right3,