Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. S. L. Garrett, J. A. Adeff, and T. J. Hofler, “ Thermoacoustic refrigerator for space applications,” J. Thermophys. Heat Transf. 7, 595599 (1993).
2. D. Mckelvey, S. Ballister, and S. L. Garrett, “ Shipboard electronics thermoacoustic cooler,” J. Acoust. Soc. Am. 98, 2961 (1995).
3. K. Tang, T. Lei, T. Jin, X. G. Lin, and Z. Z. Xu, “ A standing-wave thermoacoustic engine with gas-liquid coupling oscillation,” Appl. Phys. Lett. 94, 254101 (2009).
4. T. Biwa, D. Hasegawa, and T. Yazaki, “ Low temperature differential thermoacoustic Stirling engine,” Appl. Phys. Lett. 97, 034102 (2010).
5. G. Swift, “ Analysis and performance of a large thermoacoustic engine,” J. Acoust. Soc. Am. 92, 15511563 (1992).
6. M. E. Poese and S. L. Garrett, “ Performance measurements on a thermoacoustic refrigerator driven at high amplitudes,” J. Acoust. Soc. Am. 107, 24802486 (2000).
7. D. F. Gaitan and A. A. Atchley, “ Finite amplitude standing waves in harmonic and anharmonic tubes,” J. Acoust. Soc. Am. 93, 24892495 (1993).
8. A. H. Ibrahim, A. A. Elbeltagy, M. Emam, M. Abdou, H. Omar, and E. Abdel-Rahman, “ Suppressing harmonics in standing-wave thermoacoustic engines,” in the 3l-Inernational Summer School and Workshop on Non-Normal and Nonlinear Effects in Aero- and Thermoacoustics, Munich (2013).
9. V. G. Andreev, V. E. Gusev, A. A. Karabutov, O. V. Rudenko, and O. A. Sapozhnikov, “ Enhancement of the Q of a nonlinear acoustic resonator by active suppression of harmonics,” Sov. Phys. Acoust. 31, 162163 (1985).
10. V. G. Andreev and O. V. Rudenko, “ A technique for the suppression of nonlinear distortions and effective frequency doubling of a strong acoustic wave,” 10th All-Union Acoustic Conference, Moscow (1983).
11. V. E. Gusev, H. Bailliet, P. Lotton, S. Job, and M. Bruneau, “ Enhancement of the Q of a nonlinear acoustic resonator by active suppression of harmonics,” J. Acoust. Soc. Am. 103, 37173720 (1998).
12. J. Zhu, Y. Y. Chen, X. F. Zhu, F. J. Garcia-Vidal, X. B. Yin, W. L. Zhang, and X. Zhang, “ Acoustic rainbow trapping,” Sci. Rep. 3, 1728 (2013).
13. Q. F. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. H. Fan, and M. Lipson, “ Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
14. M. F. Yanik and S. H. Fan, “ Dynamic photon storage,” Nat. Phys. 3, 372374 (2007).
15. Q. F. Xu, P. Dong, and M. Lipson, “ Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3, 406410 (2007).
16. A. Santillan and S. I. Bozhevolnyi, “ Acoustic transparency and slow sound using detuned acoustic resonators,” Phys. Rev. B 84, 064304 (2011).
17. A. Santillan and S. I. Bozhevolnyi, “ Demonstration of slow sound propagation and acoustic transparency with a series of detuned resonators,” Phys. Rev. B 89, 184301 (2014).
18. N. Suigmoto, “ Propagation of nonlinear acoustic waves in a tunnel with an array of Helmholtz reonators,” J. Fluid Mech. 244, 5578 (1992).
19. A. F. Seybert and D. F. Ross, “ Experimental determination of acoustic properties using a two-microphone random-excitation technique,” J. Acoust. Soc. Am 61, 13621370 (1977).
20. A. F. Seybert, “ Two-sensor methods for the measurement of sound intensity and acoustic properties in ducts,” J. Acoust. Soc. Am. 83, 22332239 (1988).
21. L. Fan, Z. Chen, Y. C. Deng, J. Ding, H. Ge, S. Y. Zhang, Y. T. Yang, and H. Zhang, “ Nonlinear effects in a metamaterial with double negativity,” Appl. Phys. Lett. 105, 041904 (2014).
22. L. Fan, H. Ge, S. Y. Zhang, H. F. Gao, Y. H. Liu, and H. Zhang, “ Nonlinear acoustic fields in acoustic metamaterial based on a cylindrical pipe with periodically arranged side holes,” J. Acoust. Soc. Am 133, 38463852 (2013).
23. L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of Acoustics ( Wiley, New York, 1982), pp. 200228, 373–375.

Data & Media loading...


Article metrics loading...



A model of thermoacoustic refrigerator on the basis of an acoustic metamaterial is presented, in which an array of side pipes is adopted to suppress harmonic waves in the thermoacoustic resonator. The array of side pipes traps the acoustic waves with Fabry-Perot resonant frequencies and induces narrow forbidden bands of transmission. When the resonant frequency of the thermoacoustic refrigerator is chosen as the operating frequency, the harmonic wave can be exactly located in the forbidden band by properly adapting the structural parameters of the system. Therefore, the component of the harmonic wave in the thermoacoustic resonator can be efficiently suppressed.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd