Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/asa/journal/jasa/138/5/10.1121/1.4932166
1.
1. B. C. Yan and J. A. Hart, “ Recent developments in liver pathology,” Arch. Pathol. Lab. Med. 133(7), 10781086 (2009).
http://dx.doi.org/10.1043/1543-2165-133.7.1078
2.
2. S. Vaezy, M. Andrew, P. Kaczkowski, and L. Crum, “ Image-guided acoustic therapy,” Ann. Rev. Biomed. Eng. 3(1), 375390 (2001).
http://dx.doi.org/10.1146/annurev.bioeng.3.1.375
3.
3. N. Y. Piorkowsky, “ Europe's hepatitis challenge: Defusing the viral time bomb,” J. Hepatol. 51(6), 10681073 (2009).
http://dx.doi.org/10.1016/j.jhep.2009.09.010
4.
4. J. F. P. Bridges, G. Gallego, and B. M. Blauvelt, “ Controlling liver cancer internationally: A qualitative study of clinicians' perceptions of current public policy needs,” Health Res. Policy Syst. 9(32), 18 (2011).
http://dx.doi.org/10.1186/1478-4505-9-32
5.
5. A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, and D. Forman, “ Global cancer statistics,” CA Cancer J. Clinic. 61(2), 6990 (2011).
http://dx.doi.org/10.3322/caac.20107
6.
6. C. H. Cha, M. W. Saif, B. H. Yamane, and S. M. Weber, “ Hepatocellular carcinoma: Current management,” Curr. Probl. Surg. 47(1), 1067 (2010).
http://dx.doi.org/10.1067/j.cpsurg.2009.09.003
7.
7. D. R. Carpizo and M. D'Angelica, “ Liver resection for metastatic colorectal cancer in the presence of extrahepatic disease,” Lancet Oncol. 10(8), 801809 (2009).
http://dx.doi.org/10.1016/S1470-2045(09)70081-6
8.
8. J. S. Tomlinson, W. R. Jarnagin, R. P. DeMatteo, Y. Fong, P. Kornprat, M. Gonen, N. Kemeny, M. F. Brennan, L. H. Blumgart, and M. D'Angelica, “ Actual 10-year survival after resection of colorectal liver metastases defines cure,” J. Clin. Oncol. 25(29), 45754580 (2007).
http://dx.doi.org/10.1200/JCO.2007.11.0833
9.
9. G. ter Haar, D. Sinnett, and I. Rivens, “ High intensity focused ultrasound–a surgical technique for the treatment of discrete liver tumours,” Phys. Med. Biol. 34(11), 17431750 (1989).
http://dx.doi.org/10.1088/0031-9155/34/11/021
10.
10. G. ter Haar and C. Coussios, “ High intensity focused ultrasound: Past, present and future,” Int. J. Hypertherm. 23(2), 8587 (2007).
http://dx.doi.org/10.1080/02656730601185924
11.
11. L. Crum, M. Bailey, J. H. Hwang, V. Khokhlova, and O. Sapozhnikov, “ Therapeutic ultrasound: Recent trends and future perspectives,” Phys. Proc. 3(1), 2534 (2010). Congress on Ultrasonics, Santiago de Chile, 2009.
http://dx.doi.org/10.1016/j.phpro.2010.01.005
12.
12. T. T. Cheung, S. T. Fan, S. C. Chan, K. S. H. Chok, F. S. K. Chu, C. R. Jenkins, R. C. L. Lo, J. Y. Y. Fung, A. C. Y. Chan, W. W. Sharr, S. H. Y. Tsang, W. C. Dai, R. T. P. Poon, and C. M. Lo, “ High-intensity focused ultrasound ablation: An effective bridging therapy for hepatocellular carcinoma patients,” World J. Gastroenterol. 19(20), 30833089 (2013).
http://dx.doi.org/10.3748/wjg.v19.i20.3083
13.
13. D. Li, J. Kang, and D. C. Madoff, “ Locally ablative therapies for primary and metastatic liver cancer,” Expert Rev. Anticancer Ther. 14(8), 931945 (2014).
http://dx.doi.org/10.1586/14737140.2014.911091
14.
14. F. Wu, Z.-B. Wang, W.-Z. Chen, H. Zhu, J. Bai, J.-Z. Zou, K.-Q. Li, C.-B. Jin, F.-L. Xie, and H.-B. Su, “ Extracorporeal high intensity focused ultrasound ablation in the treatment of patients with large hepatocellular carcinoma,” Ann. Surg. Oncol. 11(12), 10611069 (2004).
http://dx.doi.org/10.1245/ASO.2004.02.026
15.
15. J.-L. Li, X.-Z. Liu, D. Zhang, and X.-F. Gong, “ Influence of ribs on the nonlinear sound field of therapeutic ultrasound,” Ultrasound Med. Biol. 33(9), 14131420 (2007).
http://dx.doi.org/10.1016/j.ultrasmedbio.2007.05.001
16.
16. S. Bobkova, L. Gavrilov, V. Khokhlova, A. Shaw, and J. Hand, “ Focusing of high-intensity ultrasound through the rib cage using a therapeutic random phased array,” Ultrasound Med. Biol. 36(6), 888906 (2010).
http://dx.doi.org/10.1016/j.ultrasmedbio.2010.03.007
17.
17. J.-F. Aubry, K. B. Pauly, C. Moonen, G. ter Haar, M. Ries, R. Salomir, S. Sokka, K. M. Sekins, Y. Shapira, F. Ye, H. Huff-Simonin, M. Eames, A. Hananel, N. Kassell, A. Napoli, J. H. Hwang, F. Wu, L. Zhang, A. Melzer, Y.-S. Kim, and W. M. Gedroyc, “ The road to clinical use of high-intensity focused ultrasound for liver cancer: Technical and clinical consensus,” J. Ther. Ultrasound 1(13), 17 (2013).
http://dx.doi.org/10.1186/2050-5736-1-13
18.
18. F. A. Duck, Physical Properties of Tissue: A Comprehensive Reference Book ( Academic, London, 1990), p. 346.
19.
19. B. E. Treeby, J. Jaros, A. P. Rendell, and B. T. Cox, “ Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudospectral method,” J. Acoust. Soc. Am. 131(6), 43244336 (2012).
http://dx.doi.org/10.1121/1.4712021
20.
20. Y. Y. Botros, E. S. Ebbini, and J. L. Volakis, “ Two-step hybrid virtual array ray (var) technique for focusing through the rib cage,” IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 45(4), 9891000 (1998).
http://dx.doi.org/10.1109/58.710577
21.
21. P. V. Yuldashev, S. M. Shmeleva, S. A. Ilyin, O. A. Sapozhnikov, L. R. Gavrilov, and V. A. Khokhlova, “ The role of acoustic nonlinearity in tissue heating behind a rib cage using a high-intensity focused ultrasound phased array,” Phys. Med. Biol. 58(8), 25372559 (2013).
http://dx.doi.org/10.1088/0031-9155/58/8/2537
22.
22. T. D. Mast, L. M. Hinkelman, L. A. Metlay, M. J. Orr, and R. C. Waag, “ Simulation of ultrasonic pulse propagation, distortion, and attenuation in the human chest wall,” J. Acoust. Soc. Am. 106(6), 36653677 (1999).
http://dx.doi.org/10.1121/1.428209
23.
23. J.-F. Aubry, M. Pernot, F. Marquet, M. Tanter, and M. Fink, “ Transcostal high-intensity-focused ultrasound: Ex vivo adaptive focusing feasibility study,” Phys. Med. Biol. 53(11), 29372951 (2008).
http://dx.doi.org/10.1088/0031-9155/53/11/012
24.
24. M. Tabei, T. D. Mast, and R. C. Waag, “ A k-space method for coupled first-order acoustic propagation equations,” J. Acoust. Soc. Am. 111(1), 5363 (2002).
http://dx.doi.org/10.1121/1.1421344
25.
25. S. Qiao, G. Shen, J. Bai, and Y. Chen, “ Transcostal high-intensity focused ultrasound treatment using phased array with geometric correction,” J. Acoust. Soc. Am. 134(2), 15031514 (2013).
http://dx.doi.org/10.1121/1.4812869
26.
26. J. Jaros, A. P. Rendell, and B. E. Treeby, “ Full-wave nonlinear ultrasound simulation on distributed clusters with applications in high-intensity focused ultrasound,” Int. J. High Perform. C, in press (2015).
http://dx.doi.org/10.1177/1094342015581024
27.
27. P. Gélat, G. ter Haar, and N. Saffari, “ Modelling of the acoustic field of a multi-element HIFU array scattered by human ribs,” Phys. Med. Biol. 56(17), 55535581 (2011).
http://dx.doi.org/10.1088/0031-9155/56/17/007
28.
28. P. Gélat, G. ter Haar, and N. Saffari, “ The optimization of acoustic fields for ablative therapies of tumours in the upper abdomen,” Phys. Med. Biol. 57(24), 84718497 (2012).
http://dx.doi.org/10.1088/0031-9155/57/24/8471
29.
29. P. Gélat, G. ter Haar, and N. Saffari, “ A comparison of methods for focusing the field of a HIFU array transducer through human ribs,” Phys. Med. Biol. 59(12), 31393171 (2014).
http://dx.doi.org/10.1088/0031-9155/59/12/3139
30.
30. A. J. Burton and G. F. Miller, “ The application of integral equation methods to the numerical solution of some exterior boundary-value problems,” Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 323(1553), 201210 (1971).
http://dx.doi.org/10.1098/rspa.1971.0097
31.
31. X. Antoine and M. Darbas, “ Alternative integral equations for the iterative solution of acoustic scattering problems,” Q. J. Mech. Appl. Math. 58(1), 107128 (2005).
http://dx.doi.org/10.1093/qjmamj/hbh023
32.
32. X. Antoine and M. Darbas, “ Generalized combined field integral equations for the iterative solution of the three-dimensional Helmholtz equation,” ESAIM Math. Model. Num. Anal. 41, 147167 (2007).
http://dx.doi.org/10.1051/m2an:2007009
33.
33. M. Darbas, E. Darrigrand, and Y. Lafranche, “ Combining analytic preconditioner and fast multipole method for the 3-D Helmholtz equation,” J. Comput. Phys. 236, 289316 (2013).
http://dx.doi.org/10.1016/j.jcp.2012.10.059
34.
34. N. A. Gumerov and R. Duraiswami, “ A broadband fast multipole accelerated boundary element method for the three dimensional Helmholtz equation,” J. Acoust. Soc. Am. 125(1), 191205 (2009).
http://dx.doi.org/10.1121/1.3021297
35.
35. W. Śmigaj, T. Betcke, S. Arridge, J. Phillips, and M. Schweiger, “ Solving boundary integral problems with bem++,” ACM Trans. Math. Softw. 41(2), 6:16:40 (2015).
http://dx.doi.org/10.1145/2590830
36.
36. J.-C. Nédélec, Acoustic and Electromagnetic Equations—Integral Representations for Harmonic Problems ( Springer, New York, 2001), p. 316.
37.
37. O. Steinbach, Numerical Approximation Methods for Elliptic Boundary Value Problems—Finite and Boundary Elements ( Springer, New York, 2008), p. 386.
38.
38. R. Kress, “ Minimizing the condition number of boundary integral operators in acoustic and electromagnetic scattering,” Q. J. Mech. Appl. Math. 38(2), 323341 (1985).
http://dx.doi.org/10.1093/qjmam/38.2.323
39.
39. L. Gavrilov and J. Hand, “ A theoretical assessment of the relative performance of spherical phased arrays for ultrasound surgery,” IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 47(1), 125139 (2000).
http://dx.doi.org/10.1109/58.818755
40.
40. R. Hiptmair, “ Operator preconditioning,” Comput. Math. Appl. 52(5), 699706 (2006).
http://dx.doi.org/10.1016/j.camwa.2006.10.008
41.
41. R. Kirby, “ From functional analysis to iterative methods,” SIAM Rev. 52(2), 269293 (2010).
http://dx.doi.org/10.1137/070706914
42.
42. F. A. Milinazzo, C. A. Zala, and G. H. Brooke, “ Rational square-root approximations for parabolic equation algorithms,” J. Acoust. Soc. Am. 101(2), 760766 (1997).
http://dx.doi.org/10.1121/1.418038
43.
43. X. Antoine, M. Darbas, and Y. Y. Lu, “ An improved surface radiation condition for high-frequency acoustic scattering problems,” Comput. Methods Appl. Mech. Eng. 195(33–36), 40604074 (2006).
http://dx.doi.org/10.1016/j.cma.2005.07.010
44.
44. S. Börm, “ Efficient numerical methods for non-local operators: -matrix compression, algorithms and analysis,” in Tracts in Mathematics ( European Mathematical Society, Zürich, 2010), Vol. 14, p. 432.
45.
45. M. Bebendorf, “ Hierarchical matrices: A means to efficiently solve elliptic boundary value problems,” in Lecture Notes in Computational Science and Engineering ( Springer, Berlin, 2008), Vol. 63, p. 296.
http://aip.metastore.ingenta.com/content/asa/journal/jasa/138/5/10.1121/1.4932166
Loading
/content/asa/journal/jasa/138/5/10.1121/1.4932166
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/asa/journal/jasa/138/5/10.1121/1.4932166
2015-11-03
2016-12-10

Abstract

High-intensity focused ultrasound (HIFU) techniques are promising modalities for the non-invasive treatment of cancer. For HIFU therapies of, e.g., livercancer, one of the main challenges is the accurate focusing of the acoustic field inside a ribcage. Computational methods can play an important role in the patient-specific planning of these transcostal HIFU treatments. This requires the accurate modeling of acousticscattering at ribcages. The use of a boundary element method(BEM) is an effective approach for this purpose because only the boundaries of the ribs have to be discretized instead of the standard approach to model the entire volume around the ribcage. This paper combines fast algorithms that improve the efficiency of BEM specifically for the high-frequency range necessary for transcostal HIFU applications. That is, a Galerkin discretized Burton–Miller formulation is used in combination with preconditioning and matrix compression techniques. In particular, quick convergence is achieved with the operator preconditioner that has been designed with on-surface radiation conditions for the high-frequency approximation of the Neumann-to-Dirichlet map. Realistic computations of acoustic scattering at 1 MHz on a human ribcage model demonstrate the effectiveness of this dedicated BEM algorithm for HIFU scattering analysis.

Loading

Full text loading...

/deliver/fulltext/asa/journal/jasa/138/5/1.4932166.html;jsessionid=DGPPNcRKOy_AMgZM_8UM5oCf.x-aip-live-03?itemId=/content/asa/journal/jasa/138/5/10.1121/1.4932166&mimeType=html&fmt=ahah&containerItemId=content/asa/journal/jasa
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=asadl.org/jasa/138/5/10.1121/1.4932166&pageURL=http://scitation.aip.org/content/asa/journal/jasa/138/5/10.1121/1.4932166'
Right1,Right2,Right3,