Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. B. C. Yan and J. A. Hart, “ Recent developments in liver pathology,” Arch. Pathol. Lab. Med. 133(7), 10781086 (2009).
2. S. Vaezy, M. Andrew, P. Kaczkowski, and L. Crum, “ Image-guided acoustic therapy,” Ann. Rev. Biomed. Eng. 3(1), 375390 (2001).
3. N. Y. Piorkowsky, “ Europe's hepatitis challenge: Defusing the viral time bomb,” J. Hepatol. 51(6), 10681073 (2009).
4. J. F. P. Bridges, G. Gallego, and B. M. Blauvelt, “ Controlling liver cancer internationally: A qualitative study of clinicians' perceptions of current public policy needs,” Health Res. Policy Syst. 9(32), 18 (2011).
5. A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, and D. Forman, “ Global cancer statistics,” CA Cancer J. Clinic. 61(2), 6990 (2011).
6. C. H. Cha, M. W. Saif, B. H. Yamane, and S. M. Weber, “ Hepatocellular carcinoma: Current management,” Curr. Probl. Surg. 47(1), 1067 (2010).
7. D. R. Carpizo and M. D'Angelica, “ Liver resection for metastatic colorectal cancer in the presence of extrahepatic disease,” Lancet Oncol. 10(8), 801809 (2009).
8. J. S. Tomlinson, W. R. Jarnagin, R. P. DeMatteo, Y. Fong, P. Kornprat, M. Gonen, N. Kemeny, M. F. Brennan, L. H. Blumgart, and M. D'Angelica, “ Actual 10-year survival after resection of colorectal liver metastases defines cure,” J. Clin. Oncol. 25(29), 45754580 (2007).
9. G. ter Haar, D. Sinnett, and I. Rivens, “ High intensity focused ultrasound–a surgical technique for the treatment of discrete liver tumours,” Phys. Med. Biol. 34(11), 17431750 (1989).
10. G. ter Haar and C. Coussios, “ High intensity focused ultrasound: Past, present and future,” Int. J. Hypertherm. 23(2), 8587 (2007).
11. L. Crum, M. Bailey, J. H. Hwang, V. Khokhlova, and O. Sapozhnikov, “ Therapeutic ultrasound: Recent trends and future perspectives,” Phys. Proc. 3(1), 2534 (2010). Congress on Ultrasonics, Santiago de Chile, 2009.
12. T. T. Cheung, S. T. Fan, S. C. Chan, K. S. H. Chok, F. S. K. Chu, C. R. Jenkins, R. C. L. Lo, J. Y. Y. Fung, A. C. Y. Chan, W. W. Sharr, S. H. Y. Tsang, W. C. Dai, R. T. P. Poon, and C. M. Lo, “ High-intensity focused ultrasound ablation: An effective bridging therapy for hepatocellular carcinoma patients,” World J. Gastroenterol. 19(20), 30833089 (2013).
13. D. Li, J. Kang, and D. C. Madoff, “ Locally ablative therapies for primary and metastatic liver cancer,” Expert Rev. Anticancer Ther. 14(8), 931945 (2014).
14. F. Wu, Z.-B. Wang, W.-Z. Chen, H. Zhu, J. Bai, J.-Z. Zou, K.-Q. Li, C.-B. Jin, F.-L. Xie, and H.-B. Su, “ Extracorporeal high intensity focused ultrasound ablation in the treatment of patients with large hepatocellular carcinoma,” Ann. Surg. Oncol. 11(12), 10611069 (2004).
15. J.-L. Li, X.-Z. Liu, D. Zhang, and X.-F. Gong, “ Influence of ribs on the nonlinear sound field of therapeutic ultrasound,” Ultrasound Med. Biol. 33(9), 14131420 (2007).
16. S. Bobkova, L. Gavrilov, V. Khokhlova, A. Shaw, and J. Hand, “ Focusing of high-intensity ultrasound through the rib cage using a therapeutic random phased array,” Ultrasound Med. Biol. 36(6), 888906 (2010).
17. J.-F. Aubry, K. B. Pauly, C. Moonen, G. ter Haar, M. Ries, R. Salomir, S. Sokka, K. M. Sekins, Y. Shapira, F. Ye, H. Huff-Simonin, M. Eames, A. Hananel, N. Kassell, A. Napoli, J. H. Hwang, F. Wu, L. Zhang, A. Melzer, Y.-S. Kim, and W. M. Gedroyc, “ The road to clinical use of high-intensity focused ultrasound for liver cancer: Technical and clinical consensus,” J. Ther. Ultrasound 1(13), 17 (2013).
18. F. A. Duck, Physical Properties of Tissue: A Comprehensive Reference Book ( Academic, London, 1990), p. 346.
19. B. E. Treeby, J. Jaros, A. P. Rendell, and B. T. Cox, “ Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudospectral method,” J. Acoust. Soc. Am. 131(6), 43244336 (2012).
20. Y. Y. Botros, E. S. Ebbini, and J. L. Volakis, “ Two-step hybrid virtual array ray (var) technique for focusing through the rib cage,” IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 45(4), 9891000 (1998).
21. P. V. Yuldashev, S. M. Shmeleva, S. A. Ilyin, O. A. Sapozhnikov, L. R. Gavrilov, and V. A. Khokhlova, “ The role of acoustic nonlinearity in tissue heating behind a rib cage using a high-intensity focused ultrasound phased array,” Phys. Med. Biol. 58(8), 25372559 (2013).
22. T. D. Mast, L. M. Hinkelman, L. A. Metlay, M. J. Orr, and R. C. Waag, “ Simulation of ultrasonic pulse propagation, distortion, and attenuation in the human chest wall,” J. Acoust. Soc. Am. 106(6), 36653677 (1999).
23. J.-F. Aubry, M. Pernot, F. Marquet, M. Tanter, and M. Fink, “ Transcostal high-intensity-focused ultrasound: Ex vivo adaptive focusing feasibility study,” Phys. Med. Biol. 53(11), 29372951 (2008).
24. M. Tabei, T. D. Mast, and R. C. Waag, “ A k-space method for coupled first-order acoustic propagation equations,” J. Acoust. Soc. Am. 111(1), 5363 (2002).
25. S. Qiao, G. Shen, J. Bai, and Y. Chen, “ Transcostal high-intensity focused ultrasound treatment using phased array with geometric correction,” J. Acoust. Soc. Am. 134(2), 15031514 (2013).
26. J. Jaros, A. P. Rendell, and B. E. Treeby, “ Full-wave nonlinear ultrasound simulation on distributed clusters with applications in high-intensity focused ultrasound,” Int. J. High Perform. C, in press (2015).
27. P. Gélat, G. ter Haar, and N. Saffari, “ Modelling of the acoustic field of a multi-element HIFU array scattered by human ribs,” Phys. Med. Biol. 56(17), 55535581 (2011).
28. P. Gélat, G. ter Haar, and N. Saffari, “ The optimization of acoustic fields for ablative therapies of tumours in the upper abdomen,” Phys. Med. Biol. 57(24), 84718497 (2012).
29. P. Gélat, G. ter Haar, and N. Saffari, “ A comparison of methods for focusing the field of a HIFU array transducer through human ribs,” Phys. Med. Biol. 59(12), 31393171 (2014).
30. A. J. Burton and G. F. Miller, “ The application of integral equation methods to the numerical solution of some exterior boundary-value problems,” Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 323(1553), 201210 (1971).
31. X. Antoine and M. Darbas, “ Alternative integral equations for the iterative solution of acoustic scattering problems,” Q. J. Mech. Appl. Math. 58(1), 107128 (2005).
32. X. Antoine and M. Darbas, “ Generalized combined field integral equations for the iterative solution of the three-dimensional Helmholtz equation,” ESAIM Math. Model. Num. Anal. 41, 147167 (2007).
33. M. Darbas, E. Darrigrand, and Y. Lafranche, “ Combining analytic preconditioner and fast multipole method for the 3-D Helmholtz equation,” J. Comput. Phys. 236, 289316 (2013).
34. N. A. Gumerov and R. Duraiswami, “ A broadband fast multipole accelerated boundary element method for the three dimensional Helmholtz equation,” J. Acoust. Soc. Am. 125(1), 191205 (2009).
35. W. Śmigaj, T. Betcke, S. Arridge, J. Phillips, and M. Schweiger, “ Solving boundary integral problems with bem++,” ACM Trans. Math. Softw. 41(2), 6:16:40 (2015).
36. J.-C. Nédélec, Acoustic and Electromagnetic Equations—Integral Representations for Harmonic Problems ( Springer, New York, 2001), p. 316.
37. O. Steinbach, Numerical Approximation Methods for Elliptic Boundary Value Problems—Finite and Boundary Elements ( Springer, New York, 2008), p. 386.
38. R. Kress, “ Minimizing the condition number of boundary integral operators in acoustic and electromagnetic scattering,” Q. J. Mech. Appl. Math. 38(2), 323341 (1985).
39. L. Gavrilov and J. Hand, “ A theoretical assessment of the relative performance of spherical phased arrays for ultrasound surgery,” IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 47(1), 125139 (2000).
40. R. Hiptmair, “ Operator preconditioning,” Comput. Math. Appl. 52(5), 699706 (2006).
41. R. Kirby, “ From functional analysis to iterative methods,” SIAM Rev. 52(2), 269293 (2010).
42. F. A. Milinazzo, C. A. Zala, and G. H. Brooke, “ Rational square-root approximations for parabolic equation algorithms,” J. Acoust. Soc. Am. 101(2), 760766 (1997).
43. X. Antoine, M. Darbas, and Y. Y. Lu, “ An improved surface radiation condition for high-frequency acoustic scattering problems,” Comput. Methods Appl. Mech. Eng. 195(33–36), 40604074 (2006).
44. S. Börm, “ Efficient numerical methods for non-local operators: -matrix compression, algorithms and analysis,” in Tracts in Mathematics ( European Mathematical Society, Zürich, 2010), Vol. 14, p. 432.
45. M. Bebendorf, “ Hierarchical matrices: A means to efficiently solve elliptic boundary value problems,” in Lecture Notes in Computational Science and Engineering ( Springer, Berlin, 2008), Vol. 63, p. 296.

Data & Media loading...


Article metrics loading...



High-intensity focused ultrasound (HIFU) techniques are promising modalities for the non-invasive treatment of cancer. For HIFU therapies of, e.g., livercancer, one of the main challenges is the accurate focusing of the acoustic field inside a ribcage. Computational methods can play an important role in the patient-specific planning of these transcostal HIFU treatments. This requires the accurate modeling of acousticscattering at ribcages. The use of a boundary element method(BEM) is an effective approach for this purpose because only the boundaries of the ribs have to be discretized instead of the standard approach to model the entire volume around the ribcage. This paper combines fast algorithms that improve the efficiency of BEM specifically for the high-frequency range necessary for transcostal HIFU applications. That is, a Galerkin discretized Burton–Miller formulation is used in combination with preconditioning and matrix compression techniques. In particular, quick convergence is achieved with the operator preconditioner that has been designed with on-surface radiation conditions for the high-frequency approximation of the Neumann-to-Dirichlet map. Realistic computations of acoustic scattering at 1 MHz on a human ribcage model demonstrate the effectiveness of this dedicated BEM algorithm for HIFU scattering analysis.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd