Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/asa/journal/jasa/138/5/10.1121/1.4934275
1.
1. Ballester, E. B. , Denham, S. , and Meddis, R. (2008). “ A cascade autocorrelation model of pitch perception,” J. Acoust. Soc. Am. 124, 21862197.
http://dx.doi.org/10.1121/1.2967829
2.
2. Carlyon, R. P. (1996). “ Encoding the fundamental frequency of a complex tone in the presence of a spectrally overlapping masker,” J. Acoust. Soc. Am. 99, 517524.
http://dx.doi.org/10.1121/1.414510
3.
3. Carlyon, R. P. , and Deeks, J. M. (2002). “ Limitations on rate discrimination,” J. Acoust. Soc. Am. 112, 10091025.
http://dx.doi.org/10.1121/1.1496766
4.
4. Carlyon, R. P. , Deeks, J. M. , and McKay, C. M. (2010). “ The upper limit of temporal pitch: Stimulus duration, conditioner pulses, and the number of electrodes stimulated,” J. Acoust. Soc. Am. 127, 14691478.
http://dx.doi.org/10.1121/1.3291981
5.
5. Carlyon, R. P. , Long, C. J. , and Deeks, J. M. (2008a). “ Pulse-rate discrimination by cochlear-implant and normal-hearing listeners with and without binaural cues,” J. Acoust. Soc. Am. 123, 22762286.
http://dx.doi.org/10.1121/1.2874796
6.
6. Carlyon, R. P. , Long, C. J. , and Micheyl, C. (2012). “ Across-channel timing differences as a potential code for the frequency of pure tones,” J. Assoc. Res. Otolaryngol. 13, 159171.
http://dx.doi.org/10.1007/s10162-011-0305-0
7.
7. Carlyon, R. P. , Macherey, O. , Frijns, J. H. M. , Axon, P. R. , Kalkman, R. K. , Boyle, P. , Baguley, D. M. , Briggs, J. , Deeks, J. M. , Briaire, J. J. , Barreau, X. , and Dauman, R. (2011). “ Pitch comparisons between electrical stimulation of a cochlear implant and acoustic stimuli presented to a normal-hearing contralateral ear,” J. Assoc. Res. Otolaryngol. 11, 625640.
http://dx.doi.org/10.1007/s10162-010-0222-7
8.
8. Carlyon, R. P. , Mahendran, S. , Deeks, J. M. , Long, C. J. , Axon, P. , Baguley, D. , Bleeck, S. , and Winter., I. M. (2008b). “ Behavioral and physiological correlates of temporal pitch perception in electric and acoustic hearing,” J. Acoust. Soc. Am. 123, 973985.
http://dx.doi.org/10.1121/1.2821986
9.
9. Carlyon, R. P. , van Wieringen, A. , Long, C. J. , Deeks, J. M. , and Wouters, J. (2002). “ Temporal pitch mechanisms in acoustic and electric hearing,” J. Acoust. Soc. Am. 112, 621633.
http://dx.doi.org/10.1121/1.1488660
10.
10. Cedolin, L. , and Delgutte, B. (2010). “ Spatio-temporal representation of the pitch of harmonic complex tones in the auditory nerve,” J. Neuroscience 30, 1271212724.
http://dx.doi.org/10.1523/JNEUROSCI.6365-09.2010
11.
11. Haenggeli, A. , Zhang, J. S. , Vischer, M. W. , Pelizzone, M. , and Rouiller, E. M. (1998). “ Electrically evoked compound action potential (ECAP) of the cochlear nerve in response to pulsatile electrical stimulation of the cochlea in the rat: Effects of stimulation at high rates,” Audiology 37, 353371.
http://dx.doi.org/10.3109/00206099809072989
12.
48. Hancock, K. E. , Chung, Y. , and Delgutte, B. (2012). “ Neural ITD coding with bilateral cochlear implants: effect of binaurally coherent jitter,” J. Neurophysiol. 108, 714728.
http://dx.doi.org/10.1152/jn.00269.2012
13.
12. Hay-McCutcheon, M. J. , Brown, C. J. , and Abbas, P. J. (2005). “ An analysis of the impact of auditory-nerve adaptation on behavioral measures of temporal integration in cochlear implant recipients,” J. Acoust. Soc. Am. 118, 24442457.
http://dx.doi.org/10.1121/1.2035593
14.
13. Heinz, M. G. , Colburn, H. S. , and Carney, L. H. (2001). “ Evaluating auditory performance limits: I. One-parameter discrimination using a computational model for the auditory nerve,” Neural Comput. 13, 22732316.
http://dx.doi.org/10.1162/089976601750541804
15.
14. Hochmair-Desoyer, I. J. , Hochmair, E. S. , Burian, K. , and Stiglbrunner, H. K. (1983). “ Percepts from the Vienna cochlear prosthesis,” Ann. N. Y. Acad. Sci. 405, 295306.
http://dx.doi.org/10.1111/j.1749-6632.1983.tb31642.x
16.
15. Kong, Y.-Y. , and Carlyon, R. P. (2009). “ Temporal pitch perception at high rates in cochlear implants,” J. Acoust. Soc. Am. 127, 31143123.
http://dx.doi.org/10.1121/1.3372713
17.
16. Kong, Y.-Y. , Deeks, J. M. , Axon, P. R. , and Carlyon, R. P. (2009). “ Limits of temporal pitch in cochlear implants,” J. Acoust. Soc. Am. 125, 16491657.
http://dx.doi.org/10.1121/1.3068457
18.
17. Landsberger, D. M. , and McKay, C. M. (2005). “ Perceptual differences between low and high rates of stimulation on single electrodes for cochlear implantees,” J. Acoust. Soc. Am. 117, 319327.
http://dx.doi.org/10.1121/1.1830672
19.
18. Laneau, J. , Wouters, J. , and Moonen, M. (2006). “ Improved music perception with explicit pitch coding in cochlear implants,” Audiol. Neuro-Otol. 11, 3852.
http://dx.doi.org/10.1159/000088853
20.
46. Macherey, O. , and Carlyon, R. P. (2014). “ Re-examining the upper limit of temporal pitch,” J. Acoust. Soc. Am. 136, 31863199.
http://dx.doi.org/10.1121/1.4900917
21.
19. Macherey, O. , Deeks, J. M. , and Carlyon, R. P. (2011). “ Extending the limits of place and temporal pitch perception in cochlear implant users,” J. Assoc. Res. Otolaryngol. 12, 233251.
http://dx.doi.org/10.1007/s10162-010-0248-x
22.
20. McDermott, H. J. , McKay, C. M. , and Vandali, A. E. (1992). “ A new portable sound processor for the University-of-Melbourne nucleus limited multielectrode cochlear implant,” J. Acoust. Soc. Am. 91, 33673371.
http://dx.doi.org/10.1121/1.402826
23.
21. McKay, C. M. , and Carlyon, R. P. (1999). “ Dual temporal pitch percepts from acoustic and electric amplitude-modulated pulse trains,” J. Acoust. Soc. Am. 105, 347357.
http://dx.doi.org/10.1121/1.424553
24.
22. Meddis, R. , and O'Mard, L. (1997). “ A unitary model of pitch perception,” J. Acoust. Soc. Am. 102, 18111820.
http://dx.doi.org/10.1121/1.420088
25.
23. Micheyl, C. , Bernstein, J. G. W. , and Oxenham, A. J. (2006). “ Detection and F0 discrimination of harmonic complex tones in the presence of competing tones or noise,” J. Acoust. Soc. Am. 120, 14931505.
http://dx.doi.org/10.1121/1.2221396
26.
24. Micheyl, C. , Keebler, M. V. , and Oxenham, A. J. (2010). “ Pitch perception for mixtures of spectrally overlapping harmonic complex tones,” J. Acoust. Soc. Am. 128, 257269.
http://dx.doi.org/10.1121/1.3372751
27.
25. Miller, C. A. , Abbas, P. J. , and Robinson, B. K. (2001). “ Response properties of the refractory auditory nerve fiber,” J. Assoc. Otolaryngol. 2, 216232.
http://dx.doi.org/10.1007/s101620010083
28.
26. Moore, B. C. J. , and Carlyon, R. P. (2005). “ Perception of pitch by people with cochlear hearing loss and by cochlear implant users,” in Springer Handbook of Auditory Research: Pitch Perception, edited by C. J. Plack and A. J. Oxenham ( Springer, New York), pp. 234277.
29.
27. Oxenham, A. J. , Micheyl, C. , Keebler, M. V. , Loper, A. , and Santurette, S. (2011). “ Pitch perception beyond the traditional existence region of pitch,” Proc. Natl. Acad. Sci. U.S.A. 108, 76297634.
http://dx.doi.org/10.1073/pnas.1015291108
30.
28. Plack, C. J. , and White, L. J. (2000). “ Pitch matches between unresolved complex tones differing by a single interpulse interval,” J. Acoust. Soc. Am. 108, 696705.
http://dx.doi.org/10.1121/1.429602
31.
29. Pressnitzer, D. , de Cheveigne, A. , and Winter, I. M. (2004). “ Physiological correlates of the perceptual pitch shift for sounds with similar waveform autocorrelation,” Acoust. Res. Lett. Online 5, 16.
http://dx.doi.org/10.1121/1.1633778
32.
30. Riss, D. , Arnoldner, C. , Baumgartner, W. D. , Kaider, A. , and Hamzavi, J. S. (2008). “ A new fine structure speech coding strategy: Speech perception at a reduced number of channels,” Otol. Neurotol. 29, 784788.
http://dx.doi.org/10.1097/MAO.0b013e31817fe00f
33.
31. Rubinstein, J. T. , Wilson, B. S. , Finley, C. C. , and Abbas, P. J. (1999). “ Pseudospontaneous activity: Stochastic independence of auditory nerve fibers with electrical stimulation,” Hear. Res. 127, 108118.
http://dx.doi.org/10.1016/S0378-5955(98)00185-3
34.
32. Shamma, S. (1985). “ Speech processing in the auditory system: II. Lateral inhibition and the central processing of speech evoked activity in the auditory nerve,” J. Acoust. Soc. Am. 78, 16221632.
http://dx.doi.org/10.1121/1.392800
35.
33. Shannon, R. V. (1983). “ Multichannel electrical stimulation of the auditory nerve in man. I. Basic psychophysics,” Hear. Res. 11, 157189.
http://dx.doi.org/10.1016/0378-5955(83)90077-1
36.
34. Siebert, W. M. (1970). “ Frequency discrimination in the auditory system: Place or periodicity mechanisms,” Proc. IEEE 58, 723730.
http://dx.doi.org/10.1109/PROC.1970.7727
37.
35.SPSS. (2012). “ IBM SPSS Statistics version 21.”
38.
47. Smith, Z. M. , and Delgutte, B. (2007). “ Sensitivity to interaural time differences in the inferior colliculus with bilateral cochlear implants,” J. Neuroscience 27, 67406750.
http://dx.doi.org/10.1523/JNEUROSCI.0052-07.2007
39.
36. Tong, Y. C. , Blamey, P. J. , Dowell, R. C. , and Clark, G. M. (1983). “ Psychophysical studies evaluating the feasibility of a speech processing strategy for a multiple-channel cochlear implant,” J. Acoust. Soc. Am. 74, 7380.
http://dx.doi.org/10.1121/1.389620
40.
37. Townshend, B. , Cotter, N. , van Compernolle, D. , and White, R. L. (1987). “ Pitch perception by cochlear implant subjects,” J. Acoust. Soc. Am. 82, 106115.
http://dx.doi.org/10.1121/1.395554
41.
38. Vandali, A. E. , Sucher, C. , Tsang, D. J. , McKay, C. M. , Chew, J. W. D. , and McDermott, H. J. (2005). “ Pitch ranking ability of cochlear implant recipients: A comparison of sound-processing strategies,” J. Acoust. Soc. Am. 117, 31263138.
http://dx.doi.org/10.1121/1.1874632
42.
39. van Hoesel, R. J. M. (2007). “ Sensitivity to timing in bilateral cochlear implant users,” J. Acoust. Soc. Am. 121, 21922206.
http://dx.doi.org/10.1121/1.2537300
43.
40. van Hoesel, R. J. M. , and Clark, G. M. (1997). “ Psychophysical studies with two binaural cochlear implant subjects,” J. Acoust. Soc. Am. 102, 495507.
http://dx.doi.org/10.1121/1.419611
44.
41. van Wieringen, A. , Carlyon, R. P. , Long, C. J. , and Wouters, J. (2003). “ Pitch of amplitude-modulated irregular-rate stimuli in electric and acoustic hearing,” J. Acoust. Soc. Am. 114, 15161528.
http://dx.doi.org/10.1121/1.1577551
45.
42. Venter, P. J. , and Hanekom, J. J. (2014). “ Is there a fundamental 300 Hz limit to pulse rate discrimination in cochlear implants?,” J. Assoc. Res. Otolaryngol. 15, 849866.
http://dx.doi.org/10.1007/s10162-014-0468-6
46.
43. Wang, J. , Baer, T. , Glasberg, B. R. , Stone, M. A. , Ye, D. , and Moore, B. C. J. (2012). “ Pitch perception of concurrent harmonic tones with overlapping spectra,” J. Acoust. Soc. Am. 132, 339356.
http://dx.doi.org/10.1121/1.4728165
47.
44. Wilson, B. S. , Finley, C. C. , Lawson, D. T. , Wolford, R. D. , Eddington, D. K. , and Rabinowitz, W. M. (1991). “ Better speech recognition with cochlear implants,” Nature 352, 236238.
http://dx.doi.org/10.1038/352236a0
48.
45. Wilson, B. S. (1997). “ The future of cochlear implants,” Brit. J. Audiol. 31, 205225.
http://dx.doi.org/10.3109/03005369709076795
http://aip.metastore.ingenta.com/content/asa/journal/jasa/138/5/10.1121/1.4934275
Loading
/content/asa/journal/jasa/138/5/10.1121/1.4934275
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/asa/journal/jasa/138/5/10.1121/1.4934275
2015-11-09
2016-09-26

Abstract

Four experiments measured the perceptual and neural correlates of the temporal pattern of electrical stimulation applied to one cochlear-implant (CI) electrode, for several subjects. Neural effects were estimated from the electrically evoked compound action potential (ECAP) to each pulse. Experiment 1 attenuated every second pulse of a 200-pps pulse train. Increasing attenuation caused pitch to drop and the ECAP to become amplitude modulated, thereby providing an estimate of the relationship between neural modulation and pitch. Experiment 2 showed that the pitch of a 200-pps pulse train can be reduced by delaying every second pulse, so that the inter-pulse-intervals alternate between longer and shorter intervals. This caused the ECAP to become amplitude modulated, but not by enough to account for the change in pitch. Experiment 3 replicated the finding that rate discrimination deteriorates with increases in baseline rate. This was accompanied by an increase in ECAP modulation, but by an amount that produced only a small effect on pitch in experiment 1. Experiment 4 showed that preceding a pulse train with a carefully selected “pre-pulse” could reduce ECAP modulation, but did not improve rate discrimination. Implications for theories of pitch and for limitations of pitch perception in CI users are discussed.

Loading

Full text loading...

/deliver/fulltext/asa/journal/jasa/138/5/1.4934275.html;jsessionid=HHKFcd6Y3BN5tZwkaoBe4zQp.x-aip-live-03?itemId=/content/asa/journal/jasa/138/5/10.1121/1.4934275&mimeType=html&fmt=ahah&containerItemId=content/asa/journal/jasa
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=asadl.org/jasa/138/5/10.1121/1.4934275&pageURL=http://scitation.aip.org/content/asa/journal/jasa/138/5/10.1121/1.4934275'
Right1,Right2,Right3,