Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/asa/journal/jasa/138/6/10.1121/1.4936860
1.
1. Abdala, C. , and Dhar, S. (2010). “ Differences in distortion product otoacoustic emission phase recorded from human neonates using two popular probes,” J. Acoust. Soc. Am. 128, EL49EL55.
http://dx.doi.org/10.1121/1.3453415
2.
2. Abdala, C. , Guérit, F. , Luo, P. , and Shera, C. A. (2014). “ Distortion-product otoacoustic emission reflection-component delays and cochlear tuning: Estimates from across the human lifespan,” J. Acoust. Soc. Am. 135, 19501958.
http://dx.doi.org/10.1121/1.4868357
3.
2. Avan, P. , Büki, B. , and Petit, C. (2013). “ Auditory distortions: Origins and functions,” Physiol. Rev. 93, 15631619.
http://dx.doi.org/10.1152/physrev.00029.2012
4.
3. Bian, L. , and Chen, S. (2008). “ Comparing the optimal signal conditions for recording cubic and quadratic distortion product otoacoustic emissions,” J. Acoust. Soc. Am. 124, 37393750.
http://dx.doi.org/10.1121/1.3001706
5.
4. Boege, P. , and Janssen, T. (2002). “ Pure-tone threshold estimation from extrapolated distortion product otoacoustic emission I/O-functions in normal and cochlear hearing loss ears,” J. Acoust. Soc. Am. 111, 18101818.
http://dx.doi.org/10.1121/1.1460923
6.
5. Brown, A. M. , Harris, F. P. , and Beveridge, H. A. (1996). “ Two source of acoustic distortion products from the human cochlea,” J. Acoust. Soc. Am. 100, 32603267.
http://dx.doi.org/10.1121/1.417209
7.
6. Brown, A. M. , and Kemp, D. T. (1984). “ Suppressibility of the 2f1-f2 stimulated acoustic emissions in gerbil and man,” Hear. Res. 13, 2937.
http://dx.doi.org/10.1016/0378-5955(84)90092-3
8.
7. Dalhoff, E. , Turcanu, D. , Vetešník, A. , and Gummer, A. W. (2013). “ Two-source interference as the major reason for auditory-threshold estimation error based on DPOAE input-output functions in normal-hearing subjects,” Hear. Res. 296, 6782.
http://dx.doi.org/10.1016/j.heares.2012.12.003
9.
8. Dalhoff, E. , Zelle, D. , and Gummer, A. W. (2015). “ Ipsilateral medial olivocochlear reflex adaptation of primary-source DPOAE component measured with pulsed tones,” in Mechanics of Hearing: Protein to Perception, edited by K. D . Karavitaki and D. P . Corey ( AIP, Melville, NY), (in press).
10.
9. Dhar, S. , Long, G. R. , and Culpepper, N. (1998). “ The dependence of the distortion product 2f1-f2 on primary levels in non-impaired human ears,” J. Speech Lang. Her. Res. 41, 13071318.
http://dx.doi.org/10.1044/jslhr.4106.1307
11.
10. Dhar, S. , and Shaffer, L. A. (2004). “ Effects of a suppressor tone on distortion product otoacoustic emissions fine structure: Why a universal suppressor level is not a practical solution to obtaining single-generator DP-Grams,” Ear Hear. 25, 573585.
http://dx.doi.org/10.1097/00003446-200412000-00006
12.
11. Dhar, S. , Talmadge, C. L. , Long, G. R. , and Tubis, A. (2002). “ Multiple internal reflections in the cochlea and their effect on DPOAE fine structure,” J. Acoust. Soc. Am. 112, 28822897.
http://dx.doi.org/10.1121/1.1516757
13.
12. Gaskill, S. A. , and Brown, A. M. (1990). “ The behavior of the acoustic distortion product, 2f1–f2, from the human ear and its relation to auditory sensitivity,” J. Acoust. Soc. Am. 88, 821839.
http://dx.doi.org/10.1121/1.399732
14.
13. Hauser, R. , and Probst, R. (1991). “ The influence of systematic primary-tone level variation L2-L1 on the acoustic distortion product emission 2f1-f2 in normal human ears,” J. Acoust. Soc. Am. 89, 280286.
http://dx.doi.org/10.1121/1.400511
15.
14. He, N. , and Schmiedt, R. A. (1993). “ Fine structure of the 2f1-f2 acoustic distortion product: Changes with primary level,” J. Acoust. Soc. Am. 94, 26592669.
http://dx.doi.org/10.1121/1.407350
16.
15. Heitmann, J. , Waldmann, B. , Schnitzler, H.-U. , Plinkert, P. K. , and Zenner, H.-P. (1998). “ Suppression of distortion product otoacoustic emissions (DPOAE) near 2f1-f2 removes DP-gram fine structure—Evidence for a secondary generator,” J. Acoust. Soc. Am. 103, 15271531.
http://dx.doi.org/10.1121/1.421290
17.
16. Johnson, T. A. , Neely, S. T. , Garner, C. A. , and Gorga, M. P. (2006a). “ Influence of primary-level and primary-frequency ratios on human distortion product otoacoustic emissions,” J. Acoust. Soc. Am. 119, 418428.
http://dx.doi.org/10.1121/1.2133714
18.
17. Johnson, T. A. , Neely, S. T. , Kopun, J. G. , Dierking, D. M. , Tan, H. , and Gorga, M. P. (2010). “ Clinical test performance of distortion-product otoacoustic emissions using new stimulus conditions,” Ear Hear. 31, 7483.
http://dx.doi.org/10.1097/AUD.0b013e3181b71924
19.
18. Johnson, T. A. , Neely, S. T. , Kopun, J. G. , and Gorga, M. P. (2006b). “ Reducing reflected contributions to ear-canal distortion product otoacoustic emissions in humans,” J. Acoust. Soc. Am. 119, 38963907.
http://dx.doi.org/10.1121/1.2200048
20.
19. Kalluri, R. , and Shera, C. A. (2001). “ Distortion-product source unmixing: A test of the two-mechanism model for DPOAE generation,” J. Acoust. Soc. Am. 109, 622637.
http://dx.doi.org/10.1121/1.1334597
21.
20. Kemp, D. T. (1978). “ Stimulated acoustic emissions from within the human auditory system,” J. Acoust. Soc. Am. 64, 13861391.
http://dx.doi.org/10.1121/1.382104
22.
21. Kemp, D. T. (1979). “ Evidence of mechanical nonlinearity and frequency selective wave amplification in the cochlea,” Arch. Otorhinolaryngol. 224, 3745.
http://dx.doi.org/10.1007/BF00455222
23.
22. Kemp, D. T. (1986). “ Otoacoustic emissions, travelling waves and cochlear mechanisms,” Hear. Res. 22, 95104.
http://dx.doi.org/10.1016/0378-5955(86)90087-0
24.
23. Kemp, D. T. , and Brown, A. M. (1983). “ An integrated view of cochlear mechanical nonlinearities observable from the ear canal,” in Cochlear Mechanics, edited by E. de Boer and M. A. Viergever ( Delft University Press, Delft), pp. 7582.
25.
24. Kemp, D. T. , and Chum, R. (1980). “ Properties of the generator of stimulated acoustic emissions,” Hear. Res. 2, 213232.
http://dx.doi.org/10.1016/0378-5955(80)90059-3
26.
25. Knight, R. D. , and Kemp, D. T. (2001). “ Wave and place fixed DPOAE maps of the human ear,” J. Acoust. Soc. Am. 109, 15131525.
http://dx.doi.org/10.1121/1.1354197
27.
26. Konrad-Martin, D. , Neely, S. T. , Keefe, D. H. , Dorn, P. A. , and Gorga, M. P. (2001). “ Sources of distortion product otoacoustic emissions by suppression experiments and inverse fast Fourier transforms in normal ears,” J. Acoust. Soc. Am. 109, 28622879.
http://dx.doi.org/10.1121/1.1370356
28.
27. Kummer, P. , Janssen, T. , and Arnold, W. (1998). “ The level and growth behavior of the 2f1–f2 distortion product otoacoustic emission and its relationship to auditory sensitivity in normal hearing and cochlear hearing loss,” J. Acoust. Am. Soc. 103, 34313444.
http://dx.doi.org/10.1121/1.423054
29.
28. Kummer, P. , Janssen, T. , Hulin, P. , and Arnold, W. (2000). “ Optimal L1-L2 primary tone level separation remains independent of test frequency in humans,” Hear. Res. 146, 4756.
http://dx.doi.org/10.1016/S0378-5955(00)00097-6
30.
29. Long, G. R. , Talmadge, C. L. , and Lee, J. (2008). “ Measuring distortion product otoacoustic emissions using continuously sweeping primaries,” J. Acoust. Soc. Am. 124, 16131626.
http://dx.doi.org/10.1121/1.2949505
31.
30. Long, G. R. , and Tubis, A. (1988). “ Investigations into the nature of the association between threshold microstructure and otoacoustic emissions,” Hear. Res. 36, 125138.
http://dx.doi.org/10.1016/0378-5955(88)90055-X
32.
31. Lonsbury-Martin, B. L. , and Martin, G. K. (2003). “ Otoacoustic emissions,” Curr. Opin. Otolaryngol. Head Neck Surg. 11, 361366.
http://dx.doi.org/10.1097/00020840-200310000-00009
33.
34. Martin, G. K. , Stagner, B. B. , and Lonsbury-Martin, B. L. (2010). “ Evidence for basal distortion-product otoacoustic emission components,” J. Acoust. Soc. Am. 127, 29552972.
http://dx.doi.org/10.1121/1.3353121
34.
35. Martin, G. K. , Stagner, B. B. , and Lonsbury-Martin, B. L. (2013). “ Time-domain demonstration of distributed distortion-product otoacoustic emission components,” J. Acoust. Soc. Am. 134, 342355.
http://dx.doi.org/10.1121/1.4809676
35.
32. Mauermann, M. , and Kollmeier, B. (2004). “ Distortion product otoacoustic emission (DPOAE) input/output functions and the influence of the second DPOAE source,” J. Acoust. Soc. Am. 116, 21992212.
http://dx.doi.org/10.1121/1.1791719
36.
33. Mauermann, M. , Uppenkamp, S. , van Hengel, P. W. J. , and Kollmeier, B. (1999). “ Evidence for the distortion product frequency place as a source of distortion product otoacoustic emission (DPOAE) fine structure in humans. I. Fine structure and higher-order DPOAE as a function of the frequency ratio f2/f1,” J. Acoust. Soc. Am. 106, 34733483.
http://dx.doi.org/10.1121/1.428200
37.
36. Moleti, A. , Longo, F. , and Sisto, R. (2012). “ Time-frequency domain filtering of evoked otoacoustic emissions,” J. Acoust. Soc. Am. 132, 24552467.
http://dx.doi.org/10.1121/1.4751537
38.
37. Neely, S. T. , Johnson, T. A. , and Gorga, M. P. (2005). “ Distortion-product otoacoustic emission measured with continuously varying stimulus level,” J. Acoust. Soc. Am. 117, 12481259.
http://dx.doi.org/10.1121/1.1853253
39.
38. Rhode, W. S. (1971). “ Observations of the vibration of the basilar membrane in squirrel monkeys using the Mössbauer technique,” J. Acoust. Soc. Am. 49, 12181231.
http://dx.doi.org/10.1121/1.1912485
40.
39. Robles, L. , and Ruggero, M. A. (2001). “ Mechanics of the mammalian cochlea,” Physiol. Rev. 81, 13051352.
41.
40. Shera, C. A. (2004). “ Mechanisms of mammalian otoacoustic emission and their implications for the clinical utility of otoacoustic emissions,” Ear Hear. 25, 8697.
http://dx.doi.org/10.1097/01.AUD.0000121200.90211.83
42.
41. Shera, C. A. , and Guinan, J. (1999). “ Evoked otoacoustic emissions arise by two fundamentally different mechanisms: A taxonomy for mammalian OAEs,” J. Acoust. Soc. Am. 105, 782798.
http://dx.doi.org/10.1121/1.426948
43.
42. Shera, C. A. , Guinan, J. , and Oxenham, A. J. (2010). “ Otoacoustic estimation of cochlear tuning: Validation in the chinchilla,” J. Assoc. Res. Otolaryngol. 11, 343365.
http://dx.doi.org/10.1007/s10162-010-0217-4
44.
43. Talmadge, C. L. , Long, G. R. , Tubis, A. , and Dhar, S. (1999). “ Experimental confirmation of the two-source interference model for the fine structure of distortion product otoacoustic emissions,” J. Acoust. Soc. Am. 105, 275292.
http://dx.doi.org/10.1121/1.424584
45.
44. van Dijk, P. , and Wit, H. P. (1990). “ Synchronization of spontaneous otoacoustic emissions to a 2f1f2 distortion product,” J. Acoust. Soc. Am. 88, 850856.
http://dx.doi.org/10.1121/1.399734
46.
45. Vetešník, A. , Turcanu, D. , Dalhoff, E. , and Gummer, A. W. (2009). “ Extraction of sources of distortion product otoacoustic emissions by onset-decomposition,” Hear. Res. 256, 2138.
http://dx.doi.org/10.1016/j.heares.2009.06.002
47.
46. Whitehead, M. L. , McCoy, M. J. , Lonsbury-Martin, B. L. , and Martin, G. K. (1995a). “ Dependence of distortion-product otoacoustic emissions on primary levels in normal and impaired ears. I. Effects of decreasing L2 below L11,” J. Acoust. Soc. Am. 97, 23462358.
http://dx.doi.org/10.1121/1.411959
48.
47. Whitehead, M. L. , Stagner, B. B. , Martin, G. K. , and Lonsbury-Martin, B. L. (1996). “ Visualization of the onset of distortion-product otoacoustic emissions, and measurement of their latency,” J. Acoust. Soc. Am. 100, 16631679.
http://dx.doi.org/10.1121/1.416065
49.
48. Whitehead, M. L. , Stagner, B. B. , McCoy, M. J. , Lonsbury-Martin, B. L. , and Martin, G. K. (1995b). “ Dependence of distortion-product otoacoustic emissions on primary levels in normal and impaired ears. II. Asymmetry in L1,L2 space,” J. Acoust. Soc. Am. 97, 23592377.
http://dx.doi.org/10.1121/1.411960
50.
49. Wier, C. C. , Norton, S. J. , and Kincaid, G. E. (1984). “ Spontaneous narrow-band oto-acoustic signals emitted by human ears: A replication,” J. Acoust. Soc. Am. 76, 12481250.
http://dx.doi.org/10.1121/1.391376
51.
50. Zelle, D. , Gummer, A. W. , and Dalhoff, E. (2013). “ Extraction of otoacoustic distortion product sources using pulse basis functions,” J. Acoust. Soc. Am. 134, EL64EL69.
http://dx.doi.org/10.1121/1.4809772
52.
51. Zelle, D. , Thiericke, J. P. , Gummer, A. W. , and Dalhoff, E. (2014). “ Multi-frequency acquisition of DPOAE input-output functions for auditory-threshold estimation,” Biomed. Tech. 59(s1), S775S778.
http://dx.doi.org/10.1515/bmt-2014-5011
53.
52. Zelle, D. , Thiericke, J. P. , Gummer, A. W. , and Dalhoff, E. (2015). “ Latencies of extracted distortion-product otoacoustic source components,” in Mechanics of Hearing: Protein to Perception, edited by K. D . Karavitaki and D. P . Corey ( AIP, Melville, NY), (in press).
54.
53. Zurek, P. M. (1981). “ Spontaneous narrowband acoustic signals emitted by human ears,” J. Acoust. Soc. Am. 69, 514523.
http://dx.doi.org/10.1121/1.385481
http://aip.metastore.ingenta.com/content/asa/journal/jasa/138/6/10.1121/1.4936860
Loading
/content/asa/journal/jasa/138/6/10.1121/1.4936860
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/asa/journal/jasa/138/6/10.1121/1.4936860
2015-12-08
2016-12-04

Abstract

Distortion-product otoacoustic emissions (DPOAEs) emerge when presenting two primary tones with different frequencies and to the cochlea and are commonly used in diagnosis and research to evaluate the functional state of the cochlea. Optimal primary-tone stimulus levels accounting for the different level dependencies of the traveling-wave amplitudes of the two primary tones near the -tonotopic place on the basilar membrane are often used to maximize DPOAE amplitudes. However, parameters defining the optimal levels can be affected by wave interference between the nonlinear-distortion and coherent-reflection components of the DPOAE. Here, the components were separated in the time domain using a pulsed stimulus paradigm and optimal levels determined. Based on the amplitude dependence of the nonlinear-distortion components on primary-tone stimulus levels, level parameters yielding maximum DPOAE amplitudes were derived for six normal-hearing adults and compared to data recorded with continuous two-tone stimulation. The level parameters resulting from analysis of the nonlinear-distortion components show dependence on stimulus frequency and small standard deviations. DPOAE input/output functions derived for optimal levels exhibit larger slopes, wider dynamic range and less variability across subjects than those derived for conventional stimulus and analysis conditions, potentially increasing their reliability and sensitivity for assessing cochlea function.

Loading

Full text loading...

/deliver/fulltext/asa/journal/jasa/138/6/1.4936860.html;jsessionid=cr0Bv2yeBspUq86cnv7I0etX.x-aip-live-03?itemId=/content/asa/journal/jasa/138/6/10.1121/1.4936860&mimeType=html&fmt=ahah&containerItemId=content/asa/journal/jasa
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=asadl.org/jasa/138/6/10.1121/1.4936860&pageURL=http://scitation.aip.org/content/asa/journal/jasa/138/6/10.1121/1.4936860'
Right1,Right2,Right3,